Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Syst Neurosci ; 16: 826475, 2022.
Article in English | MEDLINE | ID: mdl-35308564

ABSTRACT

In this Perspective review, we highlight some of the less explored aspects of lateral habenula (LHb) function in contextual memory, sleep, and behavioral flexibility. We provide evidence that LHb is well-situated to integrate different internal state and multimodal sensory information from memory-, stress-, motivational-, and reward-related circuits essential for both survival and decision making. We further discuss the impact of early life stress (ELS) on LHb function as an example of stress-induced hyperactivity and dysregulation of neuromodulatory systems within the LHb that promote anhedonia and motivational deficits following ELS. We acknowledge that recent technological advancements in manipulation and recording of neural circuits in simplified and well-controlled behavioral paradigms have been invaluable in our understanding of the critical role of LHb in motivation and emotional regulation as well as the involvement of LHb dysfunction in stress-induced psychopathology. However, we also argue that the use of ethologically-relevant behaviors with consideration of complex aspects of decision-making is warranted for future studies of LHb contributions in a wide range of psychiatric illnesses. We conclude this Perspective with some of the outstanding issues for the field to consider where a multi-systems approach is needed to investigate the complex nature of LHb circuitry interactions with environmental stimuli that predisposes psychiatric disorders.

2.
Am J Physiol Heart Circ Physiol ; 313(5): H890-H895, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28971843

ABSTRACT

Cellular senescence is emerging as a key mechanism of age-related vascular endothelial dysfunction, but evidence in healthy humans is lacking. Moreover, the influence of lifestyle factors such as habitual exercise on endothelial cell (EC) senescence is unknown. We tested the hypothesis that EC senescence increases with sedentary, but not physically active, aging and is associated with vascular endothelial dysfunction. Protein expression (quantitative immunofluorescence) of p53, a transcription factor related to increased cellular senescence, and the cyclin-dependent kinase inhibitors p21 and p16 were 116%, 119%, and 128% greater (all P < 0.05), respectively, in ECs obtained from antecubital veins of older sedentary (60 ± 1 yr, n = 12) versus young sedentary (22 ± 1 yr, n = 9) adults. These age-related differences were not present (all P > 0.05) in venous ECs from older exercising adults (57 ± 1 yr, n = 13). Furthermore, venous EC protein levels of p53 (r = -0.49, P = 0.003), p21 (r = -0.38, P = 0.03), and p16 (r = -0.58, P = 0.002) were inversely associated with vascular endothelial function (brachial artery flow-mediated dilation). Similarly, protein expression of p53 and p21 was 26% and 23% higher (both P < 0.05), respectively, in ECs sampled from brachial arteries of healthy older sedentary (63 ± 1 yr, n = 18) versus young sedentary (25 ± 1 yr, n = 9) adults; age-related changes in arterial EC p53 and p21 expression were not observed (P > 0.05) in older habitually exercising adults (59 ± 1 yr, n = 14). These data indicate that EC senescence is associated with sedentary aging and is linked to endothelial dysfunction. Moreover, these data suggest that prevention of EC senescence may be one mechanism by which aerobic exercise protects against endothelial dysfunction with age.NEW & NOTEWORTHY Our study provides novel evidence in humans of increased endothelial cell senescence with sedentary aging, which is associated with impaired vascular endothelial function. Furthermore, our data suggest an absence of age-related increases in endothelial cell senescence in older exercising adults, which is linked with preserved vascular endothelial function.


Subject(s)
Aging/physiology , Cellular Senescence/physiology , Endothelial Cells/physiology , Endothelium, Vascular/physiology , Exercise/physiology , Adolescent , Adult , Aged , Female , Habits , Healthy Volunteers , Humans , Life Style , Male , Middle Aged , Oncogene Protein p21(ras)/biosynthesis , Oncogene Protein p21(ras)/genetics , Sedentary Behavior , Tumor Suppressor Protein p53/biosynthesis , Tumor Suppressor Protein p53/genetics , Vasodilation/physiology , Young Adult
3.
Aging (Albany NY) ; 8(6): 1167-83, 2016 06.
Article in English | MEDLINE | ID: mdl-27208415

ABSTRACT

We hypothesized that supplementation with trehalose, a disaccharide that reverses arterial aging in mice, would improve vascular function in middle-aged and older (MA/O) men and women. Thirty-two healthy adults aged 50-77 years consumed 100 g/day of trehalose (n=15) or maltose (n=17, isocaloric control) for 12 weeks (randomized, double-blind). In subjects with Δbody mass less than 2.3kg (5 lb.), resistance artery endothelial function, assessed by forearm blood flow to brachial artery infusion of acetylcholine (FBFACh), increased ~30% with trehalose (13.3±1.0 vs. 10.5±1.1 AUC, P=0.02), but not maltose (P=0.40). This improvement in FBFACh was abolished when endothelial nitric oxide (NO) production was inhibited. Endothelium-independent dilation, assessed by FBF to sodium nitroprusside (FBFSNP), also increased ~30% with trehalose (155±13 vs. 116±12 AUC, P=0.03) but not maltose (P=0.92). Changes in FBFACh and FBFSNP with trehalose were not significant when subjects with Δbody mass ≥ 2.3kg were included. Trehalose supplementation had no effect on conduit artery endothelial function, large elastic artery stiffness or circulating markers of oxidative stress or inflammation (all P>0.1) independent of changes in body weight. Our findings demonstrate that oral trehalose improves resistance artery (microvascular) function, a major risk factor for cardiovascular diseases, in MA/O adults, possibly through increasing NO bioavailability and smooth muscle sensitivity to NO.


Subject(s)
Aging/physiology , Brachial Artery/drug effects , Endothelium, Vascular/drug effects , Regional Blood Flow/drug effects , Trehalose/pharmacology , Acetylcholine/pharmacology , Aged , Brachial Artery/physiology , Double-Blind Method , Endothelium, Vascular/physiology , Female , Forearm/blood supply , Humans , Male , Middle Aged , Oxidative Stress/drug effects , Oxidative Stress/physiology , Regional Blood Flow/physiology , Vascular Stiffness/drug effects , Vascular Stiffness/physiology
4.
J Physiol ; 593(20): 4615-30, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26173096

ABSTRACT

Respiratory system cooling occurs via convective and evaporative heat loss, so right-to-left shunted blood flow through a patent foramen ovale (PFO) would not be cooled. Accordingly, we hypothesized that PFO+ subjects would have a higher core temperature than PFO- subjects due, in part, to absence of respiratory system cooling of the shunted blood and that this effect would be dependent upon the estimated PFO size and inspired air temperature. Subjects were screened for the presence and size of a PFO using saline contrast echocardiography. Thirty well-matched males (15 PFO-, 8 large PFO+, 7 small PFO+) completed cycle ergometer exercise trials on three separate days. During Trial 1, subjects completed a V̇(O2max) test. For Trials 2 and 3, randomized, subjects completed four 2.5 min stages at 25, 50, 75 and 90% of the maximum workload achieved during Trial 1, breathing either ambient air (20.6 ± 1.0°C) or cold air (1.9 ± 3.5°C). PFO+ subjects had a higher oesophageal temperature (T(oesoph)) (P < 0.05) than PFO- subjects on Trial 1. During exercise breathing cold and dry air, PFO+ subjects achieved a higher T(oesoph) than PFO- subjects (P < 0.05). Subjects with a large PFO, but not those with a small PFO, had a higher T(oesoph) than PFO- subjects (P < 0.05) during Trial 1 and increased T(oesoph) breathing cold and dry air. These data suggest that the presence and size of a PFO are associated with T(oesoph) in healthy humans but this is explained only partially by absence of respiratory system cooling of shunted blood.


Subject(s)
Body Temperature , Esophagus/physiology , Exercise/physiology , Foramen Ovale, Patent/physiopathology , Rest/physiology , Adult , Forced Expiratory Volume , Humans , Male , Vital Capacity , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...