Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Pharmacol ; 170(3): 679-92, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23902406

ABSTRACT

BACKGROUND AND PURPOSE: Epilepsy is the most prevalent neurological disease and is characterized by recurrent seizures. Here, we investigate (i) the anticonvulsant profiles of cannabis-derived botanical drug substances (BDSs) rich in cannabidivarin (CBDV) and containing cannabidiol (CBD) in acute in vivo seizure models and (ii) the binding of CBDV BDSs and their components at cannabinoid CB1 receptors. EXPERIMENTAL APPROACH: The anticonvulsant profiles of two CBDV BDSs (50-422 mg·kg(-1) ) were evaluated in three animal models of acute seizure. Purified CBDV and CBD were also evaluated in an isobolographic study to evaluate potential pharmacological interactions. CBDV BDS effects on motor function were also investigated using static beam and grip strength assays. Binding of CBDV BDSs to cannabinoid CB1 receptors was evaluated using displacement binding assays. KEY RESULTS: CBDV BDSs exerted significant anticonvulsant effects in the pentylenetetrazole (≥100 mg·kg(-1) ) and audiogenic seizure models (≥87 mg·kg(-1) ), and suppressed pilocarpine-induced convulsions (≥100 mg·kg(-1) ). The isobolographic study revealed that the anticonvulsant effects of purified CBDV and CBD were linearly additive when co-administered. Some motor effects of CBDV BDSs were observed on static beam performance; no effects on grip strength were found. The Δ(9) -tetrahydrocannabinol and Δ(9) -tetrahydrocannabivarin content of CBDV BDS accounted for its greater affinity for CB1 cannabinoid receptors than purified CBDV. CONCLUSIONS AND IMPLICATIONS: CBDV BDSs exerted significant anticonvulsant effects in three models of seizure that were not mediated by the CB1 cannabinoid receptor and were of comparable efficacy with purified CBDV. These findings strongly support the further clinical development of CBDV BDSs for the treatment of epilepsy.


Subject(s)
Anticonvulsants/pharmacology , Brain/drug effects , Cannabinoids/pharmacology , Cannabis , Plant Extracts/pharmacology , Seizures/prevention & control , Animals , Anticonvulsants/metabolism , Brain/metabolism , Brain/physiopathology , Cannabidiol/pharmacology , Cannabinoids/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Hand Strength , Male , Mice , Mice, Inbred DBA , Motor Activity/drug effects , Noise/adverse effects , Pentylenetetrazole , Phytotherapy , Pilocarpine , Plant Extracts/metabolism , Plants, Medicinal , Protein Binding , Rats , Rats, Inbred WKY , Receptor, Cannabinoid, CB1/drug effects , Receptor, Cannabinoid, CB1/metabolism , Seizures/etiology , Seizures/metabolism , Seizures/physiopathology
2.
Br J Pharmacol ; 167(8): 1629-42, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22970845

ABSTRACT

BACKGROUND AND PURPOSE: Phytocannabinoids in Cannabis sativa have diverse pharmacological targets extending beyond cannabinoid receptors and several exert notable anticonvulsant effects. For the first time, we investigated the anticonvulsant profile of the phytocannabinoid cannabidivarin (CBDV) in vitro and in in vivo seizure models. EXPERIMENTAL APPROACH: The effect of CBDV (1-100 µM) on epileptiform local field potentials (LFPs) induced in rat hippocampal brain slices by 4-aminopyridine (4-AP) application or Mg(2+) -free conditions was assessed by in vitro multi-electrode array recordings. Additionally, the anticonvulsant profile of CBDV (50-200 mg·kg(-1) ) in vivo was investigated in four rodent seizure models: maximal electroshock (mES) and audiogenic seizures in mice, and pentylenetetrazole (PTZ) and pilocarpine-induced seizures in rats. The effects of CBDV in combination with commonly used antiepileptic drugs on rat seizures were investigated. Finally, the motor side effect profile of CBDV was investigated using static beam and grip strength assays. KEY RESULTS: CBDV significantly attenuated status epilepticus-like epileptiform LFPs induced by 4-AP and Mg(2+) -free conditions. CBDV had significant anticonvulsant effects on the mES (≥100 mg·kg(-1) ), audiogenic (≥50 mg·kg(-1) ) and PTZ-induced seizures (≥100 mg·kg(-1) ). CBDV (200 mg·kg(-1) ) alone had no effect against pilocarpine-induced seizures, but significantly attenuated these seizures when administered with valproate or phenobarbital at this dose. CBDV had no effect on motor function. CONCLUSIONS AND IMPLICATIONS: These results indicate that CBDV is an effective anticonvulsant in a broad range of seizure models. Also it did not significantly affect normal motor function and, therefore, merits further investigation as a novel anti-epileptic in chronic epilepsy models. LINKED ARTICLES: This article is part of a themed section on Cannabinoids. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.167.issue-8.


Subject(s)
Anticonvulsants/therapeutic use , Cannabinoids/therapeutic use , Cannabis , Phytotherapy , Seizures/drug therapy , Animals , Anticonvulsants/pharmacology , Cannabinoids/pharmacology , Disease Models, Animal , Female , Hippocampus/drug effects , Hippocampus/physiology , In Vitro Techniques , Male , Mice , Mice, Inbred DBA , Mice, Inbred ICR , Motor Activity/drug effects , Pentylenetetrazole , Pilocarpine , Rats , Rats, Inbred WKY , Seizures/chemically induced , Seizures/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...