Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Alcohol Clin Exp Res ; 37(10): 1668-79, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23763294

ABSTRACT

BACKGROUND: Because the histological and biochemical progression of liver disease is similar in alcoholic steatohepatitis (ASH) and nonalcoholic steatohepatitis (NASH), we hypothesized that the genetic susceptibility to these liver diseases would be similar. To identify potential candidate genes that regulate the development of liver fibrosis, we studied a chromosome substitution strain (CSS-17) that contains chromosome 17 from the A/J inbred strain substituted for the corresponding chromosome on the C57BL/6J (B6) genetic background. Previously, we identified quantitative trait loci (QTLs) in CSS-17, namely obesity-resistant QTL 13 and QTL 15 (Obrq13 and Obrq15, respectively), that were associated with protection from diet-induced obesity and hepatic steatosis on a high-fat diet. METHODS: To test whether these or other CSS-17 QTLs conferred resistance to alcohol-induced liver injury and fibrosis, B6, A/J, CSS-17, and congenics 17C-1 and 17C-6 were either fed Lieber-DeCarli ethanol (EtOH)-containing diet or had carbon tetrachloride (CCl4 ) administered chronically. RESULTS: The congenic strain carrying Obrq15 showed resistance from alcohol-induced liver injury and liver fibrosis, whereas Obrq13 conferred susceptibility to liver fibrosis. From published deep sequencing data for chromosome 17 in the B6 and A/J strains, we identified candidate genes in Obrq13 and Obrq15 that contained single-nucleotide polymorphisms (SNPs) in the promoter region or within the gene itself. NADPH oxidase organizer 1 (Noxo1) and NLR family, CARD domain containing 4 (Nlrc4) showed altered hepatic gene expression in strains with the A/J allele at the end of the EtOH diet study and after CCl4 treatment. CONCLUSIONS: Aspects of the genetics for the progression of ASH are unique compared to NASH, suggesting that the molecular mechanisms for the progression of disease are at least partially distinct. Using these CSSs, we identified 2 candidate genes, Noxo1 and Nlrc4, which modulate genetic susceptibility in ASH.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Calcium-Binding Proteins/genetics , Chromosomes, Human, Pair 17/genetics , Fatty Liver, Alcoholic/genetics , Fatty Liver/genetics , Genetic Predisposition to Disease/genetics , Proteins/genetics , Adaptor Proteins, Signal Transducing , Animals , Cells, Cultured , Fatty Liver/diagnosis , Fatty Liver, Alcoholic/diagnosis , Female , Genetic Association Studies/methods , Humans , Mice , Mice, Congenic , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease , Quantitative Trait Loci/genetics
2.
Int J Cancer ; 126(1): 125-32, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-19609923

ABSTRACT

Cancer susceptibility results from interactions between sensitivity and resistance alleles. We employed murine chromosome substitution strains to study how resistance alleles affected sensitive alleles during chemically-induced lung carcinogenesis. The C57BL/6J-Chr#(A/J) strains, constructed by selectively breeding sensitive A/J and resistant C57BL/6J (B6) mice, each contain one pair of A/J chromosomes within an otherwise B6 genome. Pas1, the major locus responsible for this differential strain response to urethane carcinogenesis, resides on Chr 6, but C57BL/6J-Chr6(A/J) mice (hereafter CSS-6) developed few tumors following a single urethane injection, which demonstrates epistatic interactions with other B6 alleles. CSS6 mice developed dozens of lung tumors after chronic urethane exposure, however, indicating that these epistatic interactions could be overcome by repeated carcinogen administration. Unlike A/J, but similar to B6 mice, CSS6 mice were resistant to lung carcinogenesis induced by 3-methylcholanthrene (MCA). Tumor multiplicity increased if BHT administration followed urethane exposure, showing that a Chr 6 gene(s) regulates sensitivity to chemically-induced tumor promotion. Unlike A/J tumors (predominantly codon 61 A-->T transversions), Kras mutations in tumors induced by urethane in CSS-6 mice were similar to B6 tumors (codon 61 A-->G transitions). DNA repair genes not located on Chr 6 may determine the nature of Kras mutations. CSS-6 mice are a valuable resource for testing the ability of candidate genes to modulate lung carcinogenesis.


Subject(s)
Epistasis, Genetic , Genes, ras , Genetic Predisposition to Disease , Lung Neoplasms/genetics , Mutation , Animals , Carcinogens/administration & dosage , Female , Male , Mice , Mice, Inbred C57BL
3.
Hum Mol Genet ; 18(16): 2975-88, 2009 Aug 15.
Article in English | MEDLINE | ID: mdl-19454484

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer death worldwide, with approximately 70% of cases resulting from hepatitis B and C viral infections, aflatoxin exposure, chronic alcohol use or genetic liver diseases. The remaining approximately 30% of cases are associated with obesity, type 2 diabetes and related metabolic diseases, although a direct link between these pathologies and HCCs has not been established. We tested the long-term effects of high-fat and low-fat diets on males of two inbred strains of mice and discovered that C57BL/6J but not A/J males were susceptible to non-alcoholic steatohepatitis (NASH) and HCC on a high-fat but not low-fat diet. This strain-diet interaction represents an important model for genetically controlled, diet-induced HCC. Susceptible mice showed morphological characteristics of NASH (steatosis, hepatitis, fibrosis and cirrhosis), dysplasia and HCC. mRNA profiles of HCCs versus tumor-free liver showed involvement of two signaling networks, one centered on Myc and the other on NFkappaB, similar to signaling described for the two major classes of HCC in humans. miRNA profiles revealed dramatically increased expression of a cluster of miRNAs on the X chromosome without amplification of the chromosomal segment. A switch from high-fat to low-fat diet reversed these outcomes, with switched C57BL/6J males being lean rather than obese and without evidence for NASH or HCCs at the end of the study. A similar diet modification may have important implications for prevention of HCCs in humans.


Subject(s)
Carcinoma, Hepatocellular/genetics , Dietary Fats/adverse effects , Genetic Predisposition to Disease , Liver Neoplasms/genetics , Animals , Carcinoma, Hepatocellular/etiology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Dietary Fats/metabolism , Disease Models, Animal , Humans , Liver/metabolism , Liver/pathology , Liver Neoplasms/etiology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Male , Mice , Mice, Inbred A , Mice, Inbred C57BL
4.
Mamm Genome ; 20(2): 71-82, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19137372

ABSTRACT

Obesity is associated with increased susceptibility to dyslipidemia, insulin resistance, and hypertension, a combination of traits that comprise the traditional definition of the metabolic syndrome. Recent evidence suggests that obesity is also associated with the development of nonalcoholic fatty liver disease (NAFLD). Despite the high prevalence of obesity and its related conditions, their etiologies and pathophysiology remains unknown. Both genetic and environmental factors contribute to the development of obesity and NAFLD. Previous genetic analysis of high-fat, diet-induced obesity in C57BL/6J (B6) and A/J male mice using a panel of B6-Chr(A/J)/NaJ chromosome substitution strains (CSSs) demonstrated that 17 CSSs conferred resistance to high-fat, diet-induced obesity. One of these CSS strains, CSS-17, which is homosomic for A/J-derived chromosome 17, was analyzed further and found to be resistant to diet-induced steatosis. In the current study we generated seven congenic strains derived from CCS-17, fed them either a high-fat, simple-carbohydrate (HFSC) or low-fat, simple-carbohydrate (LFSC) diet for 16 weeks and then analyzed body weight and related traits. From this study we identified several quantitative trait loci (QTLs). On a HFSC diet, Obrq13 protects against diet-induced obesity, steatosis, and elevated fasting insulin and glucose levels. On the LFSC diet, Obrq13 confers lower hepatic triglycerides, suggesting that this QTL regulates liver triglycerides regardless of diet. Obrq15 protects against diet-induced obesity and steatosis on the HFSC diet, and Obrq14 confers increased final body weight and results in steatosis and insulin resistance on the HFSC diet. In addition, on the LFSC diet, Obrq 16 confers decreased hepatic triglycerides and Obrq17 confers lower plasma triglycerides on the LFSC diet. These congenic strains provide mouse models to identify genes and metabolic pathways that are involved in the development of NAFLD and aspects of diet-induced metabolic syndrome.


Subject(s)
Chromosomes, Mammalian/genetics , Diet , Obesity/genetics , Quantitative Trait Loci , Animals , Body Weight , Diet, Fat-Restricted , Fatty Liver/genetics , Female , Male , Mice , Obesity/etiology , Triglycerides/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...