Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Microsc ; 265(2): 222-231, 2017 02.
Article in English | MEDLINE | ID: mdl-28094864

ABSTRACT

Arrays of aligned nanorods oriented perpendicular to a support, which are accessible by top-down lithography or by means of shape-defining hard templates, have received increasing interest as sensor components, components for nanophotonics and nanoelectronics, substrates for tissue engineering, surfaces having specific adhesive or antiadhesive properties and as surfaces with customized wettability. Agglomeration of the nanorods deteriorates the performance of components based on nanorod arrays. A comprehensive body of literature deals with mechanical failure mechanisms of nanorods and design criteria for mechanically stable nanorod arrays. However, the structural integrity of nanorod arrays is commonly evaluated only visually and qualitatively. We use real-space analysis of microscopic images to quantify the fraction of condensed nanorods in nanorod arrays. We suggest the number of array elements apparent in the micrographs divided by the number of array elements a defect-free array would contain in the same area, referred to as integrity fraction, as a measure of structural array integrity. Reproducible procedures to determine the imaged number of array elements are introduced. Thus, quantitative comparisons of different nanorod arrays, or of one nanorod array at different stages of its use, are possible. Structural integrities of identical nanorod arrays differing only in the length of the nanorods are exemplarily analysed.

2.
Nat Commun ; 7: 11038, 2016 Mar 14.
Article in English | MEDLINE | ID: mdl-26972450

ABSTRACT

Transition metal dichalcogenides have attracted research interest over the last few decades due to their interesting structural chemistry, unusual electronic properties, rich intercalation chemistry and wide spectrum of potential applications. Despite the fact that the majority of related research focuses on semiconducting transition-metal dichalcogenides (for example, MoS2), recently discovered unexpected properties of WTe2 are provoking strong interest in semimetallic transition metal dichalcogenides featuring large magnetoresistance, pressure-driven superconductivity and Weyl semimetal states. We investigate the sister compound of WTe2, MoTe2, predicted to be a Weyl semimetal and a quantum spin Hall insulator in bulk and monolayer form, respectively. We find that bulk MoTe2 exhibits superconductivity with a transition temperature of 0.10 K. Application of external pressure dramatically enhances the transition temperature up to maximum value of 8.2 K at 11.7 GPa. The observed dome-shaped superconductivity phase diagram provides insights into the interplay between superconductivity and topological physics.


Subject(s)
Electronics , Electrons , Molybdenum/chemistry , Superconductivity , Tellurium/chemistry , Electric Conductivity , Pressure , Quantum Theory , Transition Temperature
3.
Langmuir ; 24(19): 10936-41, 2008 Oct 07.
Article in English | MEDLINE | ID: mdl-18729482

ABSTRACT

We performed systematic adsorption studies using self-ordered nanoporous anodic aluminum oxide (AAO) in an extended range of mean pore diameters and with different pore topologies. These matrices were characterized by straight cylindrical pores having a narrow pore size distribution and no interconnections. Pronounced hysteresis loops between adsorption and desorption cycles were observed even in the case of pores closed at one end. These results are in contrast with macroscopic theoretical models and detailed numerical simulations of the adsorption in a single pore. Extensive measurements involving adsorption isotherms, reversal curves, and subloops carried out in closed-bottom pores suggest that the pores do not desorb independently from one another.

4.
ACS Nano ; 2(5): 913-20, 2008 May.
Article in English | MEDLINE | ID: mdl-19206488

ABSTRACT

We present a methodology for the analysis of the grain morphology of self-ordered hexagonal lattices and for the quantitative comparison of the quality of their grain ordering based on the distances between nearest neighbors and their angular order. Two approaches to grain identification and evaluation are introduced: (i) color coding the relative angular orientation of hexagons containing a central entity and its six nearest neighbors, and (ii) incorporating triangles comprising three nearest neighbors into grains or repelling them from grains based on deviations of the side lengths and the internal angles of the triangles from those of an ideal equilateral triangle. A spreading algorithm with tolerance parameters allows single grains to be identified, which can thus be ranked according to their size. Hence, grain size distributions are accessible. For the practical evaluation of micrographs displaying self-ordered structures, we suggest using the size of the largest identified grain as a quality measure. Quantitative analyses of grain morphologies are key to the systematic and rational optimization of the fabrication of self-assembled materials.


Subject(s)
Colloids/chemistry , Crystallization/methods , Models, Chemical , Models, Molecular , Nanostructures/chemistry , Nanostructures/ultrastructure , Nanotechnology/methods , Computer Simulation , Macromolecular Substances/chemistry , Molecular Conformation , Particle Size , Surface Properties
5.
ACS Nano ; 2(2): 302-10, 2008 Feb.
Article in English | MEDLINE | ID: mdl-19206631

ABSTRACT

The self-ordering of nanoporous anodic aluminum oxide (AAO) in the course of the hard anodization (HA) of aluminum in sulfuric acid (H2SO4) solutions at anodization voltages ranging from 27 to 80 V was investigated. Direct H2SO4-HA yielded AAOs with hexagonal pore arrays having interpore distances D(int) ranging from 72 to 145 nm. However, the AAOs were mechanically unstable and cracks formed along the cell boundaries. Therefore, we modified the anodization procedure previously employed for oxalic acid HA (H2C2O4-HA) to suppress the development of cracks and to fabricate mechanically robust AAO films with D(int) values ranging from 78 to 114 nm. Image analyses based on scanning electron micrographs revealed that at a given anodization voltage the self-ordering of nanopores as well as D(int) depend on the current density (i.e., the electric field strength at the bottoms of the pores). Moreover, periodic oscillations of the pore diameter formed at anodization voltages in the range from 27 to 32 V, which are reminiscent of structures originating from the spontaneous growth of periodic fluctuations, such as topologies resulting from Rayleigh instabilities.


Subject(s)
Aluminum Oxide/chemistry , Crystallization/methods , Electroplating/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Nanotechnology/methods , Sulfuric Acids/chemistry , Electrodes , Hardness , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Surface Properties , Tensile Strength
6.
Nano Lett ; 7(6): 1516-20, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17530809

ABSTRACT

Dense, ordered arrays of <100>-oriented Si nanorods with uniform aspect ratios up to 5:1 and a uniform diameter of 15 nm were fabricated by block copolymer lithography based on the inverse of the traditional cylindrical hole strategy and reactive ion etching. The reported approach combines control over diameter, orientation, and position of the nanorods and compatibility with complementary metal oxide semiconductor (CMOS) technology because no nonvolatile metals generating deep levels in silicon, such as gold or iron, are involved. The Si nanorod arrays exhibit the same degree of order as the block copolymer templates.


Subject(s)
Crystallization/methods , Nanotechnology/methods , Nanotubes/chemistry , Nanotubes/ultrastructure , Polymethyl Methacrylate/chemistry , Polystyrenes/chemistry , Silicon/chemistry , Electric Conductivity , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Semiconductors , Surface Properties
7.
Science ; 305(5681): 187-8, 2004 Jul 09.
Article in English | MEDLINE | ID: mdl-15247462
SELECTION OF CITATIONS
SEARCH DETAIL
...