Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 61(4): 217-227, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35073057

ABSTRACT

The strategic redesign of microbial biosynthetic pathways is a compelling route to access molecules of diverse structure and function in a potentially environmentally sustainable fashion. The promise of this approach hinges on an improved understanding of acyl carrier proteins (ACPs), which serve as central hubs in biosynthetic pathways. These small, flexible proteins mediate the transport of molecular building blocks and intermediates to enzymatic partners that extend and tailor the growing natural products. Past combinatorial biosynthesis efforts have failed due to incompatible ACP-enzyme pairings. Herein, we report the design of chimeric ACPs with features of the actinorhodin polyketide synthase ACP (ACT) and of the Escherichia coli fatty acid synthase (FAS) ACP (AcpP). We evaluate the ability of the chimeric ACPs to interact with the E. coli FAS ketosynthase FabF, which represents an interaction essential to building the carbon backbone of the synthase molecular output. Given that AcpP interacts with FabF but ACT does not, we sought to exchange modular features of ACT with AcpP to confer functionality with FabF. The interactions of chimeric ACPs with FabF were interrogated using sedimentation velocity experiments, surface plasmon resonance analyses, mechanism-based cross-linking assays, and molecular dynamics simulations. Results suggest that the residues guiding AcpP-FabF compatibility and ACT-FabF incompatibility may reside in the loop I, α-helix II region. These findings can inform the development of strategic secondary element swaps that expand the enzyme compatibility of ACPs across systems and therefore represent a critical step toward the strategic engineering of "un-natural" natural products.


Subject(s)
Acyl Carrier Protein/metabolism , Escherichia coli Proteins/metabolism , Fatty Acid Synthases/metabolism , Polyketide Synthases/metabolism , Acyl Carrier Protein/chemistry , Amino Acid Sequence , Chimera/metabolism , Escherichia coli/enzymology , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Fatty Acid Synthase, Type II/metabolism , Fatty Acid Synthases/chemistry , Fatty Acids/metabolism , Molecular Dynamics Simulation , Polyketide Synthases/chemistry , Polyketides/metabolism , Surface Plasmon Resonance/methods , Transferases (Other Substituted Phosphate Groups)/metabolism
2.
Biotechnol Prog ; 19(1): 9-13, 2003.
Article in English | MEDLINE | ID: mdl-12573000

ABSTRACT

The present study shows that COS-7 cells transiently transfected and maintained on positively charged (trimethylamine-coated) microcarrier beads synthesize recombinant protein at higher levels and for longer periods of time than cells transfected and maintained on polystyrene flasks in monolayer culture. Sustained, high-level synthesis was observed with secreted chimeric proteins (murine E-selectin- and P-selectin-human IgM chimeras) and a secreted hematopoietic growth factor (granulocyte-macrophage colony-stimulating factor). Studies with green fluorescent protein indicated that the transfected cells attached more firmly to the trimethylamine-coated microcarriers than to polystyrene flasks. After 10-14 days in culture, most of the transfected cells detached from the surface of the polystyrene flasks, whereas most transfected cells remained attached to the microcarriers. The transiently transfected microcarrier cultures produced higher levels of protein per transfected cell due to this prolonged attachment. The prolonged attachment and higher output of transfected cells on microcarriers resulted in a 5-fold increase in protein production from a single transfection over two weeks. Thus, microcarrier-based transient transfection yields quantities of recombinant proteins with a significant savings of time and reagents over monolayer culture.


Subject(s)
COS Cells/metabolism , Cell Culture Techniques/methods , Coated Materials, Biocompatible/pharmacology , Recombinant Proteins/biosynthesis , Transfection/methods , Animals , COS Cells/cytology , COS Cells/drug effects , COS Cells/physiology , Cell Adhesion/drug effects , Cell Adhesion/physiology , Cell Culture Techniques/instrumentation , Cell Division/drug effects , Cell Division/physiology , Chlorocebus aethiops/genetics , Coated Materials, Biocompatible/chemical synthesis , E-Selectin/biosynthesis , E-Selectin/genetics , Gene Expression Regulation/drug effects , Gene Expression Regulation/physiology , Granulocyte-Macrophage Colony-Stimulating Factor/biosynthesis , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Green Fluorescent Proteins , Humans , Immunoglobulin M/biosynthesis , Immunoglobulin M/genetics , Luminescent Proteins/biosynthesis , Luminescent Proteins/genetics , Methylamines/pharmacology , Mice/genetics , Microspheres , P-Selectin/biosynthesis , P-Selectin/genetics , Particle Size , Polystyrenes/pharmacology , Protein Engineering/methods , Quality Control , Recombinant Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...