Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 3768, 2022 06 30.
Article in English | MEDLINE | ID: mdl-35773264

ABSTRACT

Deep within the Precambrian basement rocks of the Earth, groundwaters can sustain subsurface microbial communities, and are targets of investigation both for geologic storage of carbon and/or nuclear waste, and for new reservoirs of rapidly depleting resources of helium. Noble gas-derived residence times have revealed deep hydrological settings where groundwaters are preserved on millions to billion-year timescales. Here we report groundwaters enriched in the highest concentrations of radiogenic products yet discovered in fluids, with an associated 86Kr excess in the free fluid, and residence times >1 billion years. This brine, from a South African gold mine 3 km below surface, demonstrates that ancient groundwaters preserved in the deep continental crust on billion-year geologic timescales may be more widespread than previously understood. The findings have implications beyond Earth, where on rocky planets such as Mars, subsurface water may persist on long timescales despite surface conditions that no longer provide a habitable zone.


Subject(s)
Groundwater , Microbiota , Earth, Planet , Geology , Noble Gases
2.
Nature ; 600(7890): 670-674, 2021 12.
Article in English | MEDLINE | ID: mdl-34937895

ABSTRACT

Carbon capture and storage (CCS) is a key technology to mitigate the environmental impact of carbon dioxide (CO2) emissions. An understanding of the potential trapping and storage mechanisms is required to provide confidence in safe and secure CO2 geological sequestration1,2. Depleted hydrocarbon reservoirs have substantial CO2 storage potential1,3, and numerous hydrocarbon reservoirs have undergone CO2 injection as a means of enhanced oil recovery (CO2-EOR), providing an opportunity to evaluate the (bio)geochemical behaviour of injected carbon. Here we present noble gas, stable isotope, clumped isotope and gene-sequencing analyses from a CO2-EOR project in the Olla Field (Louisiana, USA). We show that microbial methanogenesis converted as much as 13-19% of the injected CO2 to methane (CH4) and up to an additional 74% of CO2 was dissolved in the groundwater. We calculate an in situ microbial methanogenesis rate from within a natural system of 73-109 millimoles of CH4 per cubic metre (standard temperature and pressure) per year for the Olla Field. Similar geochemical trends in both injected and natural CO2 fields suggest that microbial methanogenesis may be an important subsurface sink of CO2 globally. For CO2 sequestration sites within the environmental window for microbial methanogenesis, conversion to CH4 should be considered in site selection.


Subject(s)
Carbon Dioxide , Groundwater , Methane , Bacteria/metabolism , Carbon Dioxide/analysis , Geology , Methane/metabolism , Temperature
3.
Anal Chem ; 81(5): 1901-6, 2009 Mar 01.
Article in English | MEDLINE | ID: mdl-19178149

ABSTRACT

The routine application of liquid scintillation counting to (41)Ca determination has been hindered by the absence of traceable calibration standards of known (41)Ca activity concentrations. The introduction of the new IRMM (41)Ca mass-spectrometric standards with sufficiently high (41)Ca activities for radiometric detection has partly overcome this although accurate measurement of stable Ca concentrations coupled with precise half-life data are still required to correct the certified (41)Ca:(40)Ca ratios to (41)Ca activity concentrations. In this study, (41)Ca efficiency versus quench curves have been produced using the IRMM standard, and their accuracy validated by comparison with theoretical calculations of (41)Ca efficiencies. Further verification of the technique was achieved through the analysis of (41)Ca in a reactor bioshield core that had been previously investigated for other radionuclide variations. Calcium-41 activity concentrations of up to 25 Bq/g were detected. Accelerator mass spectrometry (AMS) measurements of the same suite of samples showed a very good agreement, providing validation of the procedure. Calcium-41 activity concentrations declined exponentially with distance from the core of the nuclear reactor and correlated well with the predicted neutron flux.


Subject(s)
Carbon Radioisotopes/analysis , Mass Spectrometry/methods , Nuclear Reactors , Radioisotopes/analysis , Scintillation Counting/methods , Chromatography, High Pressure Liquid , Radiation Dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...