Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 28(32): 6835-44, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27238289

ABSTRACT

A fibrous herringbone-modified helicoidal architecture is identified within the exocuticle of an impact-resistant crustacean appendage. This previously unreported composite microstructure, which features highly textured apatite mineral templated by an alpha-chitin matrix, provides enhanced stress redistribution and energy absorption over the traditional helicoidal design under compressive loading. Nanoscale toughening mechanisms are also identified using high-load nanoindentation and in situ transmission electron microscopy picoindentation.

2.
J Synchrotron Radiat ; 19(Pt 3): 425-7, 2012 May.
Article in English | MEDLINE | ID: mdl-22514179

ABSTRACT

X-ray optics called multilayer Laue lenses (MLLs) provide a promising path to focusing hard X-rays with high focusing efficiency at a resolution between 5 nm and 20 nm. MLLs consist of thousands of depth-graded thin layers. The thickness of each layer obeys the linear zone plate law. X-ray beamline tests have been performed on magnetron sputter-deposited WSi(2)/Si MLLs at the Advanced Photon Source/Center for Nanoscale Materials 26-ID nanoprobe beamline. However, it is still very challenging to accurately grow each layer at the designed thickness during deposition; errors introduced during thickness measurements of thousands of layers lead to inaccurate MLL structures. Here, a new metrology approach that can accurately measure thickness by introducing regular marks on the cross section of thousands of layers using a focused ion beam is reported. This new measurement method is compared with a previous method. More accurate results are obtained using the new measurement approach.

3.
Nat Mater ; 5(7): 541-4, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16767095

ABSTRACT

The drive towards increased energy efficiency and reduced air pollution has led to accelerated worldwide development of fuel cells. As the performance and cost of fuel cells have improved, the materials comprising them have become increasingly sophisticated, both in composition and microstructure. In particular, state-of-the-art fuel-cell electrodes typically have a complex micro/nano-structure involving interconnected electronically and ionically conducting phases, gas-phase porosity, and catalytically active surfaces. Determining this microstructure is a critical, yet usually missing, link between materials properties/processing and electrode performance. Current methods of microstructural analysis, such as scanning electron microscopy, only provide two-dimensional anecdotes of the microstructure, and thus limited information about how regions are interconnected in three-dimensional space. Here we demonstrate the use of dual-beam focused ion beam-scanning electron microscopy to make a complete three-dimensional reconstruction of a solid-oxide fuel-cell electrode. We use this data to calculate critical microstructural features such as volume fractions and surface areas of specific phases, three-phase boundary length, and the connectivity and tortuosity of specific subphases.

4.
Nano Lett ; 5(7): 1399-402, 2005 Jul.
Article in English | MEDLINE | ID: mdl-16178246

ABSTRACT

The constructive interference of surface plasmon polaritons (SPP) launched by nanometric holes allows us to focus SPP into a spot of high near-field intensity having subwavelength width. Near-field scanning optical microscopy is used to map the local SPP intensity. The resulting SPP patterns and their polarization dependence are accurately described in model calculations based on a dipolar model for the SPP emission at each hole. Furthermore, we show that the high SPP intensity in the focal spot can be launched and propagated on a Ag strip guide with a 250 x 50 nm2 cross section, thus overcoming the diffraction limit of conventional optics. The combination of focusing arrays and nano-waveguides may serve as a basic element in planar nano-photonic circuits.


Subject(s)
Nanostructures/chemistry , Nanotechnology/instrumentation , Optics and Photonics/instrumentation , Refractometry/instrumentation , Surface Plasmon Resonance/instrumentation , Equipment Design , Equipment Failure Analysis , Nanostructures/analysis , Nanotechnology/methods , Refractometry/methods , Surface Plasmon Resonance/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...