Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970499

ABSTRACT

As semiconductor devices approach dimensions at the atomic scale, controlling the compositional grading across heterointerfaces becomes paramount. Particularly in nanowire axial heterostructures, which are promising for a broad spectrum of nanotechnology applications, the achievement of sharp heterointerfaces has been challenging owing to peculiarities of the commonly used vapor-liquid-solid growth mode. Here, the grading of Al across GaAs/AlxGa1-xAs/GaAs heterostructures in self-catalyzed nanowires is studied, aiming at finding the limits of the interfacial sharpness for this technologically versatile material system. A pulsed growth mode ensures precise control of the growth mechanisms even at low temperatures, while a semiempirical thermodynamic model is derived to fit the experimental Al-content profiles and quantitatively describe the dependences of the interfacial sharpness on the growth temperature, the nanowire radius, and the Al content. Finally, symmetrical Al profiles with interfacial widths of 2-3 atomic planes, at the limit of the measurement accuracy, are obtained, outperforming even equivalent thin-film heterostructures. The proposed method enables the development of advanced heterostructure schemes for a more effective utilization of the nanowire platform; moreover, it is considered expandable to other material systems and nanostructure types.

2.
ACS Appl Mater Interfaces ; 12(24): 27812-27818, 2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32442364

ABSTRACT

Nanoscale, low-phase-noise, tunable transmitter-receiver links are key for enabling the progress of wireless communication. We demonstrate that vortex-based spin-torque nano-oscillators, which are intrinsically low-noise devices because of their topologically protected magnetic structure, can achieve frequency tunability when submitted to local ion implantation. In the experiments presented here, the gyrotropic mode is excited with spin-polarized alternating currents and anisotropic magnetoresistance measurements yield discrete frequencies from a single device. Indeed, chromium-implanted regions of permalloy disks exhibit different saturation magnetization than neighboring, non-irradiated areas, and thus different resonance frequency, corresponding to the specific area where the core is gyrating. Our study proves that such devices can be fabricated without the need for further lithographical steps, suggesting ion irradiation can be a viable and cost-effective fabrication method for densely packed networks of oscillators.

3.
ACS Appl Mater Interfaces ; 12(8): 9858-9864, 2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32009381

ABSTRACT

Interfaces separating ferromagnetic (FM) layers from non-ferromagnetic layers offer unique properties due to spin-orbit coupling and symmetry breaking, yielding effects such as exchange bias, perpendicular magnetic anisotropy, spin-pumping, spin-transfer torques, and conversion between charge and spin currents and vice versa. These interfacial phenomena play crucial roles in magnetic data storage and transfer applications, which require the formation of FM nanostructures embedded in non-ferromagnetic matrices. Here, we investigate the possibility of creating such nanostructures by ion irradiation. We study the effect of lateral confinement on the ion-irradiation-induced reduction of nonmagnetic metal oxides (e.g., antiferro- or paramagnetic) to form ferromagnetic metals. Our findings are later exploited to form three-dimensional magnetic interfaces between Co, CoO, and Pt by spatial-selective irradiation of CoO/Pt multilayers. We demonstrate that the mechanical displacement of O atoms plays a crucial role in the reduction from insulating, non-ferromagnetic cobalt oxides to metallic cobalt. Metallic cobalt yields both perpendicular magnetic anisotropy in the generated Co/Pt nanostructures and, at low temperatures, exchange bias at vertical interfaces between Co and CoO. If pushed to the limit of ion-irradiation technology, this approach could, in principle, enable the creation of densely packed, atomic-scale ferromagnetic point-contact spin-torque oscillator (STO) networks or conductive channels for current-confined-path-based current perpendicular-to-plane giant magnetoresistance read heads.

4.
Sci Rep ; 6: 34814, 2016 10 06.
Article in English | MEDLINE | ID: mdl-27708399

ABSTRACT

We investigated how to control the growth of vertically aligned graphene on C-face SiC by varying the processing conditions. It is found that, the growth rate scales with the annealing temperature and the graphene height is proportional to the annealing time. Temperature gradient and crystalline quality of the SiC substrates influence their vaporization. The partial vapor pressure is crucial as it can interfere with further vaporization. A growth mechanism is proposed in terms of physical vapor transport. The monolayer character of vertically aligned graphene is verified by Raman and X-ray absorption spectroscopy. With the processed samples, d0 magnetism is realized and negative magnetoresistance is observed after Cu implantation. We also prove that multiple carriers exist in vertically aligned graphene.

SELECTION OF CITATIONS
SEARCH DETAIL
...