Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Res Sq ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38826474

ABSTRACT

Alpha-synuclein (αSyn) forms pathologic aggregates in Parkinson's disease (PD) and is implicated in mechanisms underlying neurodegeneration. While pathologic αSyn has been extensively studied, there is currently no method to evaluate αSyn within the brains of living patients. Patients with PD are often treated with deep brain stimulation (DBS) surgery in which surgical instruments are in direct contact with neuronal tissue; herein, we describe a method by which tissue is purified from DBS surgical instruments in PD and essential tremor (ET) patients and demonstrate that αSyn is robustly detected. 24 patients undergoing DBS surgery for PD (17 patients) or ET (7 patients) were enrolled; from patient samples, 81.2 ± 44.8 µg protein (n=15) is able to be purified, with immunoblot assays specific for αSyn reactive in all tested samples. Light microscopy revealed axons and capillaries as the primary components of purified tissue (n=3). Further analysis was conducted using western blot, demonstrating that truncated αSyn (1-125 αSyn) was significantly increased in PD (n=5) compared to ET (n=3), in which αSyn misfolding is not expected (0.64 ± 0.25 vs. 0.25 ± 0.12, P = 0.046), thus showing that pathologic αSyn can be reliably purified from living PD patients with this method.

2.
Article in English | MEDLINE | ID: mdl-38617832

ABSTRACT

Clinical vignette: We present the case of a patient who developed intra-operative pneumocephalus during left globus pallidus internus deep brain stimulation (DBS) placement for Parkinson's disease (PD). Microelectrode recording (MER) revealed that we were anterior and lateral to the intended target. Clinical dilemma: Clinically, we suspected brain shift from pneumocephalus. Removal of the guide-tube for readjustment of the brain target would have resulted in the introduction of movement resulting from brain shift and from displacement from the planned trajectory. Clinical solution: We elected to leave the guide-tube cannula in place and to pass the final DBS lead into a channel that was located posterior-medially from the center microelectrode pass. Gap in knowledge: Surgical techniques which can be employed to minimize brain shift in the operating room setting are critical for reduction in variation of the final DBS lead placement. Pneumocephalus after dural opening is one potential cause of brain shift. The recognition that the removal of a guide-tube cannula could worsen brain shift creates an opportunity for an intraoperative team to maintain the advantage of the 'fork' in the brain provided by the initial procedure's requirement of guide-tube placement.


Subject(s)
Deep Brain Stimulation , Pneumocephalus , Humans , Deep Brain Stimulation/adverse effects , Pneumocephalus/diagnostic imaging , Pneumocephalus/etiology , Pneumocephalus/therapy , Brain/diagnostic imaging , Brain/surgery , Globus Pallidus/diagnostic imaging , Globus Pallidus/surgery , Movement
3.
Front Hum Neurosci ; 18: 1353150, 2024.
Article in English | MEDLINE | ID: mdl-38454907

ABSTRACT

Deep brain stimulation (DBS) is an effective surgical therapy for carefully selected patients with medication refractory essential tremor (ET). The most popular anatomical targets for ET DBS are the ventral intermedius nucleus (VIM) of the thalamus, the caudal zona incerta (cZI) and the posterior subthalamic area (PSA). Despite extensive knowledge in DBS programming for tremor suppression, it is not uncommon to experience stimulation induced side effects related to DBS therapy. Dysarthria, dysphagia, ataxia, and gait impairment are common stimulation induced side effects from modulation of brain tissue that surround the target of interest. In this review, we explore current evidence about the etiology of stimulation induced side effects in ET DBS and provide several evidence-based strategies to troubleshoot, reprogram and retain tremor suppression.

4.
Front Hum Neurosci ; 18: 1349599, 2024.
Article in English | MEDLINE | ID: mdl-38481795

ABSTRACT

Introduction: Charge balancing is used in deep brain stimulation (DBS) to avoid net charge accumulation at the tissue-electrode interface that can result in neural damage. Charge balancing paradigms include passive recharge and active recharge. In passive recharge, each cathodic pulse is accompanied by a waiting period before the next stimulation, whereas active recharge uses energy to deliver symmetric anodic and cathodic stimulation pulses sequentially, producing a net zero charge. We sought to determine differences in stimulation induced side effect thresholds between active vs. passive recharge during the intraoperative monopolar review. Methods: Sixty-five consecutive patients undergoing DBS from 2021 to 2022 were retrospectively reviewed. Intraoperative monopolar review was performed with both active recharge and passive recharge for all included patients to determine side effect stimulation thresholds. Sixteen patients with 64 total DBS contacts met inclusion criteria for further analysis. Intraoperative monopolar review results were compared with the monopolar review from the first DBS programming visit. Results: The mean intraoperative active recharge stimulation threshold was 4.1 mA, while the mean intraoperative passive recharge stimulation threshold was 3.9 mA, though this difference was not statistically significant on t-test (p = 0.442). Mean stimulation threshold at clinic follow-up was 3.2 mA. In Pearson correlation, intraoperative passive recharge thresholds had stronger correlation with follow-up stimulation thresholds (Pearson r = 0.5281, p < 0.001) than intraoperative active recharge (Pearson r = 0.340, p = 0.018), however the difference between these correlations was not statistically significant on Fisher Z correlation test (p = 0.294). The mean difference between intraoperative passive recharge stimulation threshold and follow-up stimulation threshold was 0.8 mA, while the mean difference between intraoperative active recharge threshold and follow-up threshold was 1.2 mA. This difference was not statistically significant on a t-test (p = 0.134). Conclusions: Both intraoperative active recharge and passive recharge stimulation were well-correlated with the monopolar review at the first programming visit. No statistically significant differences were observed suggesting that either passive or active recharge may be utilized intraoperatively.

5.
J Neurosurg ; 141(1): 221-229, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38306648

ABSTRACT

OBJECTIVE: Deep brain stimulation (DBS) is a common procedure in neurosurgery used for the treatment of Parkinson's disease (PD) and essential tremor (ET) among other disorders. Lower urinary tract dysfunction is a common complication in PD, and this study aimed to evaluate the risk factors of postoperative urinary retention (POUR) after DBS surgery in patients with PD compared with patients with ET. Understanding the risk factors associated with this complication may help in the development of strategies to minimize its occurrence and improve patient outcomes. METHODS: The study was a retrospective analysis of patients who underwent DBS surgery for PD and ET at the University of Florida between 2010 and 2021. The surgical technique used has been described in previous articles and included a two-stage procedure, with stage 1 involving burr hole placement, microelectrode recording, and electrode implantation and stage 2 involving the placement of an implantable pulse generator (IPG). Data were collected on patient characteristics and surgical details and analyzed using univariate and mixed-linear models. Post hoc propensity score matching was used to confirm the association between subthalamic nucleus (STN)-DBS and POUR. RESULTS: The study included 350 patients (153 with PD and 197 with ET) who underwent 1086 DBS surgeries (lead implantations, IPG placement, and IPG replacements). The POUR rates were 16.6% (79/477), 5.2% (19/363), and 0.4% (1/246) for stage 1, stage 2, and IPG replacement procedures, respectively. Optimal mixed-effects logistic modeling revealed history of urinary retention (OR 9.3, p = 0.004), male sex (OR 2.7, p = 0.011), having an electrode placed or connected for the first time (OR 2.2, p = 0.014), anesthesia time (OR 1.5 for each 30-minute increase, p < 0.0001), preoperative opioid use (OR 1.4 for each additional 10 morphine milligram equivalents, p = 0.032), and Charlson Comorbidity Index (OR 1.4 per comorbidity, p = 0.017) to be significant risk factors for POUR. Having an electrode in the STN was found to be protective of POUR (propensity score-matched analysis: OR 0.2, p = 0.010). CONCLUSIONS: Most risk factors found to increase the risk of POUR in DBS are not modifiable but are still important to consider in preoperative planning. Opioid use reduction and shorter anesthesia time may be modifiable risk factors to weigh against their alternative. Targeting the STN during DBS may result in decreased rates of POUR. This highlights the potential for STN-targeted DBS in reducing POUR risk in PD and ET patients.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Postoperative Complications , Subthalamic Nucleus , Urinary Retention , Humans , Urinary Retention/etiology , Urinary Retention/epidemiology , Deep Brain Stimulation/adverse effects , Male , Female , Risk Factors , Retrospective Studies , Subthalamic Nucleus/surgery , Aged , Parkinson Disease/therapy , Parkinson Disease/surgery , Postoperative Complications/etiology , Postoperative Complications/epidemiology , Middle Aged , Essential Tremor/surgery , Essential Tremor/therapy
6.
Article in English | MEDLINE | ID: mdl-37663531

ABSTRACT

Clinical vignette: A 73-year-old woman with Parkinson's disease (PD) underwent implantation of bilateral subthalamic nucleus deep brain stimulators (STN-DBS) to address bilateral upper extremity medication-refractory tremor. Post-operatively, she experienced a "see-saw effect" where small increases in stimulation resulted in improvement in one symptom (tremor) with concurrent worsening in another (dyskinesia). Clinical dilemma: SID is usually considered a positive predictor of DBS outcome. However, there are cases where SID cannot be optimized. Lead location and pre-operative characteristics may contribute to this adverse effect. If the combination of programming and medication adjustments fails to resolve SID, what can be done to "rescue" the outcome? Clinical solution: Management of SID requires a gradual and steadfast programming approach. Post-operative lead localization can guide advanced programming and decision-making. Rescue surgical interventions may be considered. Gap in knowledge: In cases where SID is persistent despite deploying persistent optimization strategies, there is limited guidance on next steps.


Subject(s)
Dyskinesias , Parkinson Disease , Subthalamic Nucleus , Aged , Female , Humans , Parkinson Disease/complications , Parkinson Disease/therapy , Tremor
7.
Br J Neurosurg ; : 1-3, 2023 Jul 09.
Article in English | MEDLINE | ID: mdl-37424104

ABSTRACT

INTRODUCTION: Hydrocephalus treatment can be very challenging. While some hydrocephalic patients can be treated endoscopically, many will require ventricular shunting. Frequent shunt issues over a lifetime is not uncommon. Although most shunt malfunctions are of the ventricular catheter or valve, distal failures occur as well. A subset of patients will accumulate non-functioning distal drainage sites. CASE DESCRIPTION: We present a 27-year-old male with developmental delay who was shunted perinatally for hydrocephalus from intraventricular hemorrhage of prematurity. After failure of the peritoneum, pleura, superior vena cava (SVC), gallbladder, and endoscopy, an inferior vena cava (IVC) shunt was placed minimally-invasively via the common femoral vein. We believe this is only the eighth reported ventriculo-inferior-venacaval shunt. IVC occlusion years later was successfully treated with endovascular angioplasty and stenting followed by anticoagulation. To our knowledge, a ventriculo-inferior-venacaval shunt salvaged by endovascular surgery has not been previously described in the literature. CONCLUSION: After failure of the peritoneum, pleura, SVC, gallbladder, and endoscopy, IVC shunt placement is an option. Subsequent IVC occlusion can be rescued by endovascular angioplasty and stenting. Anticoagulation after stenting (and potentially after initial IVC placement) is advised.

8.
Brain Commun ; 5(2): fcad025, 2023.
Article in English | MEDLINE | ID: mdl-36895960

ABSTRACT

Globus pallidus internus deep brain stimulation is an established therapy for patients with medication-refractory Parkinson's disease. Clinical outcomes are highly dependent on applying stimulation to precise locations in the brain. However, robust neurophysiological markers are needed to determine the optimal electrode location and to guide postoperative stimulation parameter selection. In this study, we evaluated evoked resonant neural activity in the pallidum as a potential intraoperative marker to optimize targeting and stimulation parameter selection to improve outcomes of deep brain stimulation for Parkinson's disease. Intraoperative local field potential recordings were acquired in 22 patients with Parkinson's disease undergoing globus pallidus internus deep brain stimulation implantation (N = 27 hemispheres). A control group of patients undergoing implantation in the subthalamic nucleus (N = 4 hemispheres) for Parkinson's disease or the thalamus for essential tremor (N = 9 patients) were included for comparison. High-frequency (135 Hz) stimulation was delivered from each electrode contact sequentially while recording the evoked response from the other contacts. Low-frequency stimulation (10 Hz) was also applied as a comparison. Evoked resonant neural activity features, including amplitude, frequency and localization were measured and analysed for correlation with empirically derived postoperative therapeutic stimulation parameters. Pallidal evoked resonant neural activity elicited by stimulation in the globus pallidus internus or externus was detected in 26 of 27 hemispheres and varied across hemispheres and across stimulating contacts within individual hemispheres. Bursts of high-frequency stimulation elicited evoked resonant neural activity with similar amplitudes (P = 0.9) but a higher frequency (P = 0.009) and a higher number of peaks (P = 0.004) than low-frequency stimulation. We identified a 'hotspot' in the postero-dorsal pallidum where stimulation elicited higher evoked resonant neural activity amplitudes (P < 0.001). In 69.6% of hemispheres, the contact that elicited the maximum amplitude intraoperatively matched the contact empirically selected for chronic therapeutic stimulation by an expert clinician after 4 months of programming sessions. Pallidal and subthalamic nucleus evoked resonant neural activity were similar except for lower pallidal amplitudes. No evoked resonant neural activity was detected in the essential tremor control group. Given its spatial topography and correlation with postoperative stimulation parameters empirically selected by expert clinicians, pallidal evoked resonant neural activity shows promise as a potential marker to guide intraoperative targeting and to assist the clinician with postoperative stimulation programming. Importantly, evoked resonant neural activity may also have the potential to guide directional and closed-loop deep brain stimulation programming for Parkinson's disease.

9.
Zootaxa ; 5125(2): 229-240, 2022 Apr 08.
Article in English | MEDLINE | ID: mdl-36101218

ABSTRACT

Natural and experimental wood falls harbor a rich and abundant macrofaunal community in the deep-sea. Two undescribed capitellids have been collected from wood species bundles deployed at 3,100 m at the Deadwood 2 site in Monterey Bay and several other locations in the northeastern Pacific. Capitella blakei sp. nov. is a widely distributed deep-sea capitellid in the northeastern Pacific occurring from the Monterey canyon north to the Endeavour segment of the San Juan de Fuca Ridge, a range of almost 1,400 km. It belongs to a group of Capitella species having only individuals with male external characteristics, chaetigers 17 with notopodial and neuropodial capillaries and is readily distinguished from its congeners by the presence of a peristomium clearly separated from prostomium, deep lateral and ventral grooves, and methyl green staining pattern. Capitella multibranchiata sp. nov. is unique in the genus by the presence of branchiae on abdominal notopodial and neuropodial segments. The adult morphology of both species is described and compared to their most apparently related congeners. Our results have shown a greater diversity of deep-sea Capitella than previously known. The wide geographical distribution of C. blakei sp. nov. on wood habitats indicates that these wood falls may be functioning as ecological and evolutionary stepping-stones between the enriched sediments of vents and seeps.


Subject(s)
Annelida , Polychaeta , Animals , Ecosystem , Male , Phylogeny , Wood
10.
Ecol Evol ; 12(5): e8913, 2022 May.
Article in English | MEDLINE | ID: mdl-35600686

ABSTRACT

Within an animal species, the body sizes of individuals at higher latitudes are often different from individuals at lower latitudes. For homeothermic species that maintain a relatively constant body temperature, such as mammals and birds, individuals at higher latitudes tend to be larger. For ectothermic species, such as insects, that do not retain their own body heat and which often do not maintain a relatively constant body temperature, patterns of body size with latitude are highly variable. This has led some authors to contend that patterns in even closely related species cannot be expected to be similar. Indeed, to our knowledge, no studies of invertebrates have found that more closely related species have more similar relationships between body size and latitude. Further, no studies have investigated the potential influence of diet quality on interspecific differences in these clines. We measured wing lengths of specimens (N = 1753) in eight lycaenid butterfly species and one species of the sister family, Riodinidae to determine if more closely related species have similar latitudinal trends. We also estimated the mean nitrogen content of caterpillars' hosts to investigate whether this often-limiting nutrient influences the strength and direction of latitudinal clines in body size. We found that four species are significantly smaller at higher latitudes, an additional species is marginally smaller at higher latitudes (p < .06), and four species had no significant relationship with latitude. We also found a strong phylogenetic signal for latitudinal clines in body size among our species, which indicates that some closely related species may have similar clines. However, the strength and direction of these clines did not depend on the estimated nitrogen content of caterpillars' hosts. Our results indicate that mean nitrogen content of hosts may not be an important driver in latitudinal clines but that phylogenetic relationships among species should be accounted for when exploring other potential drivers of body-size clines in invertebrate species.

11.
Brain Commun ; 4(2): fcac063, 2022.
Article in English | MEDLINE | ID: mdl-35368612

ABSTRACT

Tremor is a common symptom in multiple sclerosis and can present as a severe postural and action tremor, leading to significant disability. Owing to the diffuse and progressive nature of the disease, it has been challenging to characterize the pathophysiology underlying multiple sclerosis tremor. Deep brain stimulation of the ventralis intermedius and the ventralis oralis posterior thalamic nuclei has been used to treat medically refractory multiple sclerosis tremors with variable results. The aim of this study was to characterize multiple sclerosis tremor at the network level by applying modern connectomic techniques to data from a previously completed single-centre, randomized, single-blind prospective trial of 12 subjects who were treated with unilateral dual-lead (ventralis intermedius + ventralis oralis posterior) thalamic deep brain stimulation. Preoperative T1-weighted MRI and postoperative head CTs were used, along with applied programming settings, to estimate the volume of tissue activated for each patient. The volumes of tissue activated were then used to make voxel-wise and structural connectivity correlations with clinically observed tremor suppression. The volume of the tissue-activated analyses identified the optimal region of stimulation at the ventralis oralis posterior ventralis intermedius border intersecting with the dentato-rubro-thalamic tract. A regression model showed strong connectivity to the supplemental motor area was positively associated with tremor suppression (r = 0.66) in this cohort, whereas connectivity to the primary motor cortex was negatively associated with tremor suppression (r = -0.69), a finding opposite to that seen in ventralis intermedius deep brain stimulation for essential tremor. Comparing the structural connectivity to that of an essential tremor cohort revealed a distinct network that lies anterior to the essential tremor network. Overall, the volumes of tissue activated and connectivity observations converge to suggest that optimal suppression of multiple sclerosis tremor will likely be achieved by directing stimulation more anteriorly toward the ventralis oralis posterior and that a wide field of stimulation synergistically modulating the ventralis oralis posterior and ventralis intermedius nuclei may be more effective than traditional ventralis intermedius deep brain stimulation at suppressing the severe tremors commonly seen in complex tremor syndromes such as multiple sclerosis tremor.

12.
Front Neurol ; 13: 825178, 2022.
Article in English | MEDLINE | ID: mdl-35356461

ABSTRACT

Deep brain stimulation (DBS) has advanced treatment options for a variety of neurologic and neuropsychiatric conditions. As the technology for DBS continues to progress, treatment efficacy will continue to improve and disease indications will expand. Hardware advances such as longer-lasting batteries will reduce the frequency of battery replacement and segmented leads will facilitate improvements in the effectiveness of stimulation and have the potential to minimize stimulation side effects. Targeting advances such as specialized imaging sequences and "connectomics" will facilitate improved accuracy for lead positioning and trajectory planning. Software advances such as closed-loop stimulation and remote programming will enable DBS to be a more personalized and accessible technology. The future of DBS continues to be promising and holds the potential to further improve quality of life. In this review we will address the past, present and future of DBS.

13.
J Neurol Sci ; 435: 120190, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35299121

ABSTRACT

This review article provides a brief historical perspective on the use of DBS for tremor, reviews the various etiologies for tremor that can be effectively managed with DBS therapy, discusses the DBS targets that have been used for suppression of tremor, and reviews in detail important aspects of DBS surgical technique, including significant technological advances over the past several years that, when applied, can substantially improve the outcomes of DBS for tremor. This article is part of the Special Issue "Tremor" edited by Daniel D. Truong, Mark Hallett, and Aasef Shaikh.


Subject(s)
Deep Brain Stimulation , Essential Tremor , Deep Brain Stimulation/methods , Essential Tremor/therapy , Humans , Tremor/therapy
15.
J Parkinsons Dis ; 11(4): 1881-1885, 2021.
Article in English | MEDLINE | ID: mdl-34420982

ABSTRACT

Deep brain stimulation (DBS) is an effective neuromodulatory therapy for Parkinson's disease (PD). Early studies using globus pallidus internus (GPi) DBS for PD profiled the nucleus as having two functional zones. This concept disseminated throughout the neuromodulation community as the "GPi triangle". Although our understanding of the pallidum has greatly evolved over the past 20 years, we continue to reference the triangle in our clinical decision-making process. We propose a new direction, termed the spatial boundary hypothesis, to build upon the 2-dimensional outlook on GPi DBS. We believe an updated 3-D GPi model can produce more consistent, positive patient outcomes.


Subject(s)
Deep Brain Stimulation , Globus Pallidus , Parkinson Disease , Globus Pallidus/diagnostic imaging , Globus Pallidus/physiopathology , Humans , Imaging, Three-Dimensional , Parkinson Disease/physiopathology , Parkinson Disease/therapy , Treatment Outcome
16.
Mov Disord Clin Pract ; 5(1): 75-82, 2018.
Article in English | MEDLINE | ID: mdl-30363386

ABSTRACT

BACKGROUND: The ventral intermediate nucleus (VIM) is the target of choice for Essential Tremor (ET) deep brain stimulation (DBS). Renewed interest in caudal zona incerta (cZI) stimulation for tremor control has recently emerged and some groups believe this approach may address long-term reduction of benefit seen with VIM-DBS. OBJECTIVES: To compare clinical outcomes and DBS programming in the long-term between VIM and cZI neurostimulation in ET-DBS patients. MATERIALS AND METHODS: A retrospective review of 53 DBS leads from 47 patients was performed. Patients were classified into VIM or cZI groups according to the location of the activated DBS contact. Demographics, DBS settings, and Tremor Rating Scale scores were compared between groups at baseline and yearly follow-up to 4 years after DBS. Student t-tests and analysis of variance (ANOVA) were used to compare variables between groups. RESULTS: Relative to baseline, an improvement in ON-DBS tremor scores was observed in both groups from 6 months to 4 years post-DBS (p < 0.05). Although improvement was still significant at 4 years, scores from month 6 to 2 years were comparable between groups but at 3 and 4 years post-DBS the outcome was better in the VIM group (p < 0.01). Stimulation settings were similar across groups, although we found a lower voltage in the VIM group at 3 years post-DBS. CONCLUSIONS: More ventral DBS contacts in the cZI region do improve tremor, however, VIM-DBS provided better long-term outcomes. Randomized controlled trials comparing cZI vs VIM targets should confirm these results.

18.
PLoS One ; 12(9): e0183711, 2017.
Article in English | MEDLINE | ID: mdl-28902876

ABSTRACT

INTRODUCTION: Deep brain stimulation (DBS) is an effective treatment for multiple movement disorders and shows substantial promise for the treatment of some neuropsychiatric and other disorders of brain neurocircuitry. Optimal neuroanatomical lead position is a critical determinant of clinical outcomes in DBS surgery. Lead migration, defined as an unintended post-operative displacement of the DBS lead, has been previously reported. Despite several reports, however, there have been no systematic investigations of this issue. This study aimed to: 1) quantify the incidence of lead migration in a large series of DBS patients, 2) identify potential risk factors contributing to DBS lead migration, and 3) investigate the practical importance of this complication by correlating its occurrence with clinical outcomes. METHODS: A database of all DBS procedures performed at UF was queried for patients who had undergone multiple post-operative DBS lead localization imaging studies separated by at least two months. Bilateral DBS implantation has commonly been performed as a staged procedure at UF, with an interval of six or more months between sides. To localize the position of each DBS lead, a head CT is acquired ~4 weeks after lead implantation and fused to the pre-operative targeting MRI. The fused targeting images (MR + stereotactic CT) acquired in preparation for the delayed second side lead implantation provide an opportunity to repeat the localization of the first implanted lead. This paradigm offers an ideal patient population for the study of delayed DBS lead migration because it provides a large cohort of patients with localization of the same implanted DBS lead at two time points. The position of the tip of each implanted DBS lead was measured on both the initial post-operative lead localization CT and the delayed CT. Lead tip displacement, intracranial lead length, and ventricular indices were collected and analyzed. Clinical outcomes were characterized with validated rating scales for all cases, and a comparison was made between outcomes of cases with lead migration versus those where migration of the lead did not occur. RESULTS: Data from 138 leads in 132 patients with initial and delayed lead localization CT scans were analyzed. The mean distance between initial and delayed DBS lead tip position was 2.2 mm and the mean change in intracranial lead length was 0.45 mm. Significant delayed migration (>3 mm) was observed in 17 leads in 16 patients (12.3% of leads, 12.1% of patients). Factors associated with lead migration were: technical error, repetitive dystonic head movement, and twiddler's syndrome. Outcomes were worse in dystonia patients with lead migration (p = 0.035). In the PD group, worse clinical outcomes trended in cases with lead migration. CONCLUSIONS: Over 10% of DBS leads in this large single center cohort were displaced by greater than 3 mm on delayed measurement, adversely affecting outcomes. Multiple risk factors emerged, including technical error during implantation of the DBS pulse generator and failure of lead fixation at the burr hole site. We hypothesize that a change in surgical technique and a more effective lead fixation device might mitigate this problem.


Subject(s)
Deep Brain Stimulation/adverse effects , Deep Brain Stimulation/statistics & numerical data , Electrodes, Implanted/adverse effects , Foreign-Body Migration/epidemiology , Postoperative Complications/epidemiology , Adult , Aged , Brain/diagnostic imaging , Brain/surgery , Deep Brain Stimulation/instrumentation , Deep Brain Stimulation/methods , Dystonic Disorders/epidemiology , Dystonic Disorders/therapy , Female , Foreign-Body Migration/etiology , Humans , Incidence , Magnetic Resonance Imaging , Male , Middle Aged , Parkinson Disease/epidemiology , Parkinson Disease/therapy , Postoperative Complications/etiology , Retrospective Studies , Risk Factors , Treatment Outcome
19.
Lancet Neurol ; 16(9): 691-700, 2017 09.
Article in English | MEDLINE | ID: mdl-28642125

ABSTRACT

BACKGROUND: Efficacy in previous studies of surgical treatments of refractory multiple sclerosis tremor using lesioning or deep brain stimulation (DBS) has been variable. The aim of this study was to investigate the safety and efficacy of dual-lead thalamic DBS (one targeting the ventralis intermedius-ventralis oralis posterior nucleus border [the VIM lead] and one targeting the ventralis oralis anterior-ventralis oralis posterior border [the VO lead]) for the treatment of multiple sclerosis tremor. METHODS: We did a single centre, single-blind, prospective, randomised pilot trial at the University of Florida Center for Movement Disorders and Neurorestoration clinic (Gainesville, FL, USA). We recruited adult patients with a clinical diagnosis of multiple sclerosis tremor refractory to previous medical therapy. Before surgery to implant both leads, we randomly assigned patients (1:1) to receive 3 months of optimised single-lead DBS-either VIM or VO. We did the randomisation with a computer-generated sequence, using three blocks of four patients, and independent members of the Center did the assignment. Patients and all clinicians other than the DBS programming nurse were masked to the choice of lead. Patients underwent surgery 1 month after their baseline visit for implantation of the dual lead DBS system. A pulse generator and two extension cables were implanted in a second surgery 3-4 weeks later. Patients then received an initial 3-month period of continuous stimulation of either the VIM or VO lead followed by blinded safety assessment of their tremor with the Tolosa-Fahn-Marin Tremor Rating Scale (TRS) during optimised VIM or VO lead stimulation at the end of the 3 months. After this visit, both leads were activated in all patients for an additional 3 months, and optimally programmed during serial visits as dictated by a prespecified programming algorithm. At the 6-month follow-up visit, TRS score was measured, and mood and psychological batteries were administered under four stimulation conditions: VIM on, VO on, both on, and both off (the order of testing was chosen by a computer-generated random sequence, assigned by independent members of the centre, and enacted by an unmasked DBS programming nurse). Each of four stimulation settings were tested over 4 consecutive days, with stimulation settings held constant for at least 12 h before testing. The primary outcome was change in mean total TRS score at the 6-month postoperative assessment with both leads activated, compared with the preoperative baseline mean TRS score. Analysis was by intention to treat. Safety was analysed in all patients who received the surgical implantation except in one patient who discontinued before the safety assessment. This trial is registered with ClinicalTrials.gov, number NCT00954421. FINDINGS: Between Jan 16, 2007, and Dec 17, 2013, we enrolled 12 patients who were randomly assigned either to 3 initial months of VIM-only or VO-only stimulation. One patient from the VO-only group developed an infection necessitating DBS explantation, and was excluded from the assessment of the primary outcome. Compared with the mean baseline TRS score of 57·0 (SD 10·2), the mean score at 6 months decreased to 40·1 (17·6), -29·6% reduction; t=-0·28, p=0·03. Three of 11 patients did not respond to surgical intervention. One patient died suddenly 2 years after surgery, but this was judged to be unrelated to DBS implantation. Serious adverse events included a superficial wound infection in one patient that resolved with antibiotic therapy, and transient altered mental status and late multiple sclerosis exacerbation in another patient. The most common non-serious adverse events were headache and fatigue. INTERPRETATION: Dual lead thalamic DBS might be a safe and effective option for improving severe, refractory multiple sclerosis tremor. Larger studies are necessary to show whether this technique is widely applicable, safe in the long-term, and effective in treating multiple sclerosis tremor or other severe tremor disorders. FUNDING: US National Institutes of Health, the Cathy Donnellan, Albert E Einstein, and Birdie W Einstein Fund, and the William Merz Professorship.


Subject(s)
Deep Brain Stimulation/methods , Multiple Sclerosis/therapy , Outcome Assessment, Health Care , Tremor/therapy , Ventral Thalamic Nuclei , Adult , Aged , Deep Brain Stimulation/adverse effects , Deep Brain Stimulation/instrumentation , Female , Follow-Up Studies , Humans , Male , Middle Aged , Multiple Sclerosis/complications , Pilot Projects , Single-Blind Method , Tremor/etiology , Young Adult
20.
Article in English | MEDLINE | ID: mdl-27127722

ABSTRACT

BACKGROUND: Deep brain stimulation (DBS) has been shown to be effective for Parkinson's disease, essential tremor, and primary dystonia. However, mixed results have been reported in Huntington's disease (HD). CASE REPORT: A single case of HD DBS was identified from the University of Florida DBS Brain Tissue Network. The clinical presentation, evolution, surgical planning, DBS parameters, clinical outcomes, and brain pathological changes are summarized. DISCUSSION: This case of HD DBS revealed that chorea may improve and be sustained. Minimal histopathological changes were noted around the DBS leads. Severe atrophy due to HD likely changed the DBS lead position relative to the internal capsule.

SELECTION OF CITATIONS
SEARCH DETAIL
...