Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Arch Dis Child Fetal Neonatal Ed ; 108(4): 367-372, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36609412

ABSTRACT

OBJECTIVES: To examine neonates in Scotland aged 0-27 days with SARS-CoV-2 infection confirmed by viral testing; the risk of confirmed neonatal infection by maternal and infant characteristics; and hospital admissions associated with confirmed neonatal infections. DESIGN: Population-based cohort study. SETTING AND POPULATION: All live births in Scotland, 1 March 2020-31 January 2022. RESULTS: There were 141 neonates with confirmed SARS-CoV-2 infection over the study period, giving an overall infection rate of 153 per 100 000 live births (141/92 009, 0.15%). Among infants born to women with confirmed infection around the time of birth, the confirmed neonatal infection rate was 1812 per 100 000 live births (15/828, 1.8%). Two-thirds (92/141, 65.2%) of neonates with confirmed infection had an associated admission to neonatal or (more commonly) paediatric care. Six of these babies (6/92, 6.5%) were admitted to neonatal and/or paediatric intensive care; however, none of these six had COVID-19 recorded as their main diagnosis. There were no neonatal deaths among babies with confirmed infection. IMPLICATIONS AND RELEVANCE: Confirmed neonatal SARS-CoV-2 infection was uncommon over the first 23 months of the pandemic in Scotland. Secular trends in the neonatal confirmed infection rate broadly followed those seen in the general population, although at a lower level. Maternal confirmed infection at birth was associated with an increased risk of neonatal confirmed infection. Two-thirds of neonates with confirmed infection had an associated admission to hospital, with resulting implications for the baby, family and services, although their outcomes were generally good. Ascertainment of confirmed infection depends on the extent of testing, and this is likely to have varied over time and between groups: the extent of unconfirmed infection is inevitably unknown.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Pregnancy , Infant, Newborn , Infant , Child , Humans , Female , COVID-19/diagnosis , COVID-19/epidemiology , Pregnancy Complications, Infectious/epidemiology , Pregnancy Complications, Infectious/diagnosis , SARS-CoV-2 , Cohort Studies , Scotland/epidemiology , Pregnancy Outcome/epidemiology
3.
J Am Chem Soc ; 144(42): 19382-19395, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36251010

ABSTRACT

Many of the highest-performing polymer photocatalysts for sacrificial hydrogen evolution from water have contained dibenzo[b,d]thiophene sulfone units in their polymer backbones. However, the reasons behind the dominance of this building block are not well understood. We study films, dispersions, and solutions of a new set of solution-processable materials, where the sulfone content is systematically controlled, to understand how the sulfone unit affects the three key processes involved in photocatalytic hydrogen generation in this system: light absorption; transfer of the photogenerated hole to the hole scavenger triethylamine (TEA); and transfer of the photogenerated electron to the palladium metal co-catalyst that remains in the polymer from synthesis. Transient absorption spectroscopy and electrochemical measurements, combined with molecular dynamics and density functional theory simulations, show that the sulfone unit has two primary effects. On the picosecond timescale, it dictates the thermodynamics of hole transfer out of the polymer. The sulfone unit attracts water molecules such that the average permittivity experienced by the solvated polymer is increased. We show that TEA oxidation is only thermodynamically favorable above a certain permittivity threshold. On the microsecond timescale, we present experimental evidence that the sulfone unit acts as the electron transfer site out of the polymer, with the kinetics of electron extraction to palladium dictated by the ratio of photogenerated electrons to the number of sulfone units. For the highest-performing, sulfone-rich material, hydrogen evolution seems to be limited by the photogeneration rate of electrons rather than their extraction from the polymer.

4.
Nat Commun ; 13(1): 6124, 2022 10 17.
Article in English | MEDLINE | ID: mdl-36253471

ABSTRACT

Data on the safety of COVID-19 vaccines in early pregnancy are limited. We conducted a national, population-based, matched cohort study assessing associations between COVID-19 vaccination and miscarriage prior to 20 weeks gestation and, separately, ectopic pregnancy. We identified women in Scotland vaccinated between 6 weeks preconception and 19 weeks 6 days gestation (for miscarriage; n = 18,780) or 2 weeks 6 days gestation (for ectopic; n = 10,570). Matched, unvaccinated women from the pre-pandemic and, separately, pandemic periods were used as controls. Here we show no association between vaccination and miscarriage (adjusted Odds Ratio [aOR], pre-pandemic controls = 1.02, 95% Confidence Interval [CI] = 0.96-1.09) or ectopic pregnancy (aOR = 1.13, 95% CI = 0.92-1.38). We undertook additional analyses examining confirmed SARS-CoV-2 infection as the exposure and similarly found no association with miscarriage or ectopic pregnancy. Our findings support current recommendations that vaccination remains the safest way for pregnant women to protect themselves and their babies from COVID-19.


Subject(s)
Abortion, Spontaneous , COVID-19 Vaccines , COVID-19 , Influenza, Human , Pregnancy, Ectopic , Female , Humans , Pregnancy , Abortion, Spontaneous/epidemiology , Cohort Studies , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Influenza, Human/prevention & control , Pregnancy Outcome , SARS-CoV-2 , Vaccination
5.
Angew Chem Int Ed Engl ; 61(50): e202211587, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36224107

ABSTRACT

Carbon nitride (CNx ) is a light-absorber with excellent performance in photocatalytic suspension systems, but the activity of CNx photoelectrodes has remained low. Here, cyanamide-functionalized CNx (NCN CNx ) was co-deposited with ITO nanoparticles on a 1.8 Šthick alumina-coated FTO electrode. Transient absorption spectroscopy and impedance measurements support that ITO acts as a conductive binder and improves electron extraction from the NCN CNx , whilst the alumina underlayer reduces recombination losses between the ITO and the FTO glass. The Al2 O3 |ITO : NCN CNx film displays a benchmark performance for CNx -based photoanodes with an onset of -0.4 V vs a reversible hydrogen electrode (RHE), and 1.4±0.2 mA cm-2 at 1.23 V vs RHE during AM1.5G irradiation for the selective oxidation of 4-methylbenzyl alcohol. This assembly strategy will improve the exploration of CNx in fundamental and applied photoelectrochemical (PEC) studies.

6.
Lancet Respir Med ; 10(12): 1129-1136, 2022 12.
Article in English | MEDLINE | ID: mdl-36216011

ABSTRACT

BACKGROUND: Evidence suggests that the SARS-CoV-2 omicron (B.1·1.529) is associated with lower risks of adverse outcomes than the delta (B.1.617.2) variant among the general population. However, little is known about outcomes after omicron infection in pregnancy. We aimed to assess and compare short-term pregnancy outcomes after SARS-CoV-2 delta and omicron infection in pregnancy. METHODS: We did a national population-based cohort study of women who had SARS-CoV-2 infection in pregnancy between May 17, 2021, and Jan 31, 2022. The primary maternal outcome was admission to critical care within 21 days of infection or death within 28 days of date of infection. Pregnancy outcomes were preterm birth and stillbirth within 28 days of infection. Neonatal outcomes were death within 28 days of birth, and low Apgar score (<7 of 10, for babies born at term) or neonatal SARS-CoV-2 infection in births occurring within 28 days of maternal infection. We used periods when variants were dominant in the general Scottish population, based on 50% or more of cases being S-gene positive (delta variant, from May 17 to Dec 14, 2021) or S-gene negative (omicron variant, from Dec 15, 2021, to Jan 31, 2022) as surrogates for variant infections. Analyses used logistic regression, adjusting for maternal age, deprivation quintile, ethnicity, weeks of gestation, and vaccination status. Sensitivity analyses included restricting the analysis to those with first confirmed SARS-CoV-2 infection and using periods when delta or omicron had 90% or more predominance. FINDINGS: Between May 17, 2021, and Jan 31, 2022, there were 9923 SARS-CoV-2 infections in 9823 pregnancies, in 9817 women in Scotland. Compared with infections in the delta-dominant period, SARS-CoV-2 infections in pregnancy in the omicron-dominant period were associated with lower maternal critical care admission risk (0·3% [13 of 4968] vs 1·8% [89 of 4955]; adjusted odds ratio 0·25, 95% CI 0·14-0·44) and lower preterm birth within 28 days of infection (1·8% [37 of 2048] vs 4·2% [98 of 2338]; 0·57, 95% CI 0·38-0·87). There were no maternal deaths within 28 days of infection. Estimates of low Apgar scores were imprecise due to low numbers (5 [1·2%] of 423 with omicron vs 11 [2·1%] of 528 with delta, adjusted odds ratio 0·72, 0·23-2·32). There were fewer stillbirths in the omicron-dominant period than in the delta-dominant period (4·3 [2 of 462] per 1000 births vs 20·3 [13 of 639] per 1000) and no neonatal deaths during the omicron-dominant period (0 [0 of 460] per 1000 births vs 6·3 [4 of 626] per 1000 births), thus numbers were too small to support adjusted analyses. Rates of neonatal infection were low in births within 28 days of maternal SARS-CoV-2 infection, with 11 cases of neonatal SARS-CoV-2 in the delta-dominant period, and 1 case in the omicron-dominant period. Of the 15 stillbirths, 12 occurred in women who had not received two or more doses of COVID-19 vaccination at the time of SARS-CoV-2 infection in pregnancy. All 12 cases of neonatal SARS-CoV-2 infection occurred in women who had not received two or more doses of vaccine at the time of maternal infection. Findings in sensitivity analyses were similar to those in the main analyses. INTERPRETATION: Pregnant women infected with SARS-CoV-2 were substantially less likely to have a preterm birth or maternal critical care admission during the omicron-dominant period than during the delta-dominant period. FUNDING: Wellcome Trust, Tommy's charity, Medical Research Council, UK Research and Innovation, Health Data Research UK, National Core Studies-Data and Connectivity, Public Health Scotland, Scottish Government Health and Social Care, Scottish Government Chief Scientist Office, National Research Scotland.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Premature Birth , Infant, Newborn , Pregnancy , Female , Humans , SARS-CoV-2 , Pregnancy Outcome/epidemiology , Cohort Studies , Stillbirth/epidemiology , Premature Birth/epidemiology , COVID-19 Vaccines , Pregnancy Complications, Infectious/epidemiology
7.
Macromol Biosci ; 20(11): e2000087, 2020 11.
Article in English | MEDLINE | ID: mdl-32537851

ABSTRACT

A facile method to prepare hydrophilic polymers by a postpolymerization nucleophillic aromatic substitution reaction of fluoride on an emissive conjugated polymer (CP) backbone is reported. Quantitative functionalization by a series of monofunctionalized ethylene glycol oligomers, from dimer to hexamer, as well as with high molecular weight polyethylene glycol is demonstrated. The length of the ethylene glycol sidechains is shown to have a direct impact on the surface wettability of the polymer, as well as its solubility in polar solvents. However, the energetics and band gap of the CPs remain essentially constant. This method therefore allows an easy way to modulate the wettability and solubility of CP materials for a diverse series of applications.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Polymerization , Polymers/chemistry , Chloroform/chemistry , Electronics , Molecular Weight , Optics and Photonics , Solubility , Solutions , Solvents/chemistry , Spectrophotometry, Ultraviolet , Temperature , Water/chemistry , Wettability
8.
J Am Chem Soc ; 141(28): 11219-11229, 2019 Jul 17.
Article in English | MEDLINE | ID: mdl-31265274

ABSTRACT

This study addresses the light intensity dependence of charge accumulation in a photocatalyst suspension, and its impact on both charge recombination kinetics and steady-state H2 evolution efficiency. Cyanamide surface functionalized melon-type carbon nitride (NCNCNx) has been selected as an example of emerging carbon nitrides photocatalysts because of its excellent charge storage ability. Transient spectroscopic studies (from ps to s) show that the bimolecular recombination of photogenerated electrons and holes in NCNCNx can be well described by a random walk model. Remarkably, the addition of hole scavengers such as 4-methylbenzyl alcohol can lead to ∼400-fold faster recombination kinetics (lifetime shortening to ∼10 ps). We show that this acceleration is not the direct result of ultrafast hole extraction by the scavenger, but is rather caused by long-lived electron accumulation in NCNCNx after hole extraction. The dispersive pseudo-first order recombination kinetics become controlled by the density of accumulated electrons. H2 production and steady-state spectroscopic measurements indicate that the accelerated recombination caused by electron accumulation limits the H2 generation efficiency. The addition of a reversible electron acceptor and mediator, methyl viologen (MV2+), accelerates the extraction of electrons from the NCNCNx and increases the H2 production efficiency under one sun irradiation by more than 30%. These results demonstrate quantitatively that while long-lived electrons are essential to drive photoinduced H2 generation in many photocatalysts, excessive electron accumulation may result in accelerated recombination losses and lower performance, and thus highlight the importance of efficient electron and hole extraction in enabling efficient water splitting photocatalysts.

9.
Nat Commun ; 9(1): 4968, 2018 11 23.
Article in English | MEDLINE | ID: mdl-30470759

ABSTRACT

Conjugated polymers have sparked much interest as photocatalysts for hydrogen production. However, beyond basic considerations such as spectral absorption, the factors that dictate their photocatalytic activity are poorly understood. Here we investigate a series of linear conjugated polymers with external quantum efficiencies for hydrogen production between 0.4 and 11.6%. We monitor the generation of the photoactive species from femtoseconds to seconds after light absorption using transient spectroscopy and correlate their yield with the measured photocatalytic activity. Experiments coupled with modeling suggest that the localization of water around the polymer chain due to the incorporation of sulfone groups into an otherwise hydrophobic backbone is crucial for charge generation. Calculations of solution redox potentials and charge transfer free energies demonstrate that electron transfer from the sacrificial donor becomes thermodynamically favored as a result of the more polar local environment, leading to the production of long-lived electrons in these amphiphilic polymers.

SELECTION OF CITATIONS
SEARCH DETAIL
...