Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 298(12): 102639, 2022 12.
Article in English | MEDLINE | ID: mdl-36309089

ABSTRACT

Succination is the spontaneous reaction between the respiratory intermediate fumarate and cellular thiols that forms stable S-(2-succino)-adducts such as S-(2-succino)cysteine (2SC). 2SC is a biomarker for conditions associated with elevated fumarate levels, including diabetes, obesity, and certain cancers, and succination likely contributes to disease progression. Bacillus subtilis has a yxe operon-encoded breakdown pathway for 2SC that involves three distinct enzymatic conversions. The first step is N-acetylation of 2SC by YxeL to form N-acetyl-2SC (2SNAC). YxeK catalyzes the oxygenation of 2SNAC, resulting in its breakdown to oxaloacetate and N-acetylcysteine, which is deacetylated by YxeP to give cysteine. The monooxygenase YxeK is key to the pathway but is rare, with close homologs occurring infrequently in prokaryote and fungal genomes. The existence of additional 2SC breakdown pathways was not known prior to this study. Here, we used comparative genomics to identify a S-(2-succino) lyase (2SL) that replaces yxeK in some yxe gene clusters. 2SL genes from Enterococcus italicus and Dickeya dadantii complement B. subtilis yxeK mutants. We also determined that recombinant 2SL enzymes efficiently break down 2SNAC into fumarate and N-acetylcysteine, can perform the reverse reaction, and have minor activity against 2SC and other small molecule thiols. The strong preferences both YxeK and 2SL enzymes have for 2SNAC indicate that 2SC acetylation is a conserved breakdown step. The identification of a second naturally occurring 2SC breakdown pathway underscores the importance of 2SC catabolism and defines a general strategy for 2SC breakdown involving acetylation, breakdown, and deacetylation.


Subject(s)
Cysteine , Lyases , Cysteine/metabolism , Acetylcysteine , Sulfhydryl Compounds , Fumarates/metabolism
2.
Microbiol Resour Announc ; 11(9): e0063922, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35980179

ABSTRACT

Metformin is a major water pollutant globally. We report the complete genome sequences of two pseudomonads, Pseudomonas sp. strain KHPS1 and Pseudomonas hydrolytica strain KHPS2, isolated from wastewater treatment plant sludge, which can grow on metformin as the nitrogen source. Both isolates contained ~80-kb plasmids that may contain metformin breakdown genes.

3.
FEBS J ; 287(7): 1343-1358, 2020 04.
Article in English | MEDLINE | ID: mdl-32149453

ABSTRACT

Promiscuous enzymes and spontaneous chemical reactions can convert normal cellular metabolites into noncanonical or damaged metabolites. These damaged metabolites can be a useless drain on metabolism and may be inhibitory and/or reactive, sometimes leading to toxicity. Thus, mechanisms to prevent metabolite damage from occurring (metabolite damage preemption) or to convert damaged metabolites back to physiological forms (metabolite repair) are essential for sustained operation of metabolic networks. Some iconic examples of metabolite damage and its repair or preemption are associated with the tricarboxylic acid (TCA) cycle, and other metabolite damage control systems are likely to exist here due to the inherent promiscuity of TCA cycle enzymes and reactivity of TCA cycle intermediates. Here, we review known metabolite damage reactions and metabolite damage control systems associated with the TCA cycle. This includes a previously unrecognized metabolite damage control system - an oxaloacetate (OAA) enol-keto tautomerase activity that is 'built-in' to the TCA cycle. This activity is required to remove the highly inhibitory enol form of OAA and is likely to be critical for TCA cycle operation. By cataloging these instances, we show that metabolite damage and its repair or preemption is a prevalent feature of the TCA cycle and suggest many more metabolite damage control systems are likely to exist.


Subject(s)
Citric Acid Cycle , Intramolecular Oxidoreductases/metabolism , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...