Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Article in English | MEDLINE | ID: mdl-34849446

ABSTRACT

PURPOSE: We investigated the utility of the Oncomine Breast cfDNA Assay for detecting circulating tumor DNA (ctDNA) in women from a breast screening population, including healthy women with no abnormality detected by mammogram, and women on follow-up through to advanced breast cancer. MATERIALS AND METHODS: Blood samples were taken from 373 women (127 healthy controls recruited through breast screening, 28 ductal carcinoma in situ, 60 primary breast cancers, 47 primary breast cancer on follow-up, and 111 metastatic breast cancers [MBC]) to recover plasma and germline DNA for analysis with the Oncomine Breast cfDNA Assay on the Ion S5 platform. RESULTS: One hundred sixteen of 373 plasma samples had one or more somatic variants detected across eight of the 10 genes and were called ctDNA-positive; MBC had the highest proportion of ctDNA-positive samples (61; 55%) and healthy controls the lowest (20; 15.7%). ESR1, TP53, and PIK3CA mutations account for 93% of all variants detected and predict poor overall survival in MBC (hazard ratio = 3.461; 95% CI, 1.866 to 6.42; P = .001). Patients with MBC had higher plasma cell-free DNA levels, higher variant allele frequencies, and more polyclonal variants, notably in ESR1 than in all other groups. Only 15 individuals had evidence of potential clonal hematopoiesis of indeterminate potential mutations. CONCLUSION: We were able detect ctDNA across the breast cancer spectrum, notably in MBC where variants in ESR1, TP53, and PIK3CA predicted poor overall survival. The assay could be used to monitor emergence of resistance mutations such as in ESR1 that herald resistance to aromatase inhibitors to tailor adjuvant therapies. However, we suggest caution is needed when interpreting results from a single plasma sample as variants were also detected in a small proportion of HCs.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Circulating Tumor DNA/genetics , Class I Phosphatidylinositol 3-Kinases/genetics , Estrogen Receptor alpha/genetics , Tumor Suppressor Protein p53/genetics , Adult , Aged , Aged, 80 and over , Aromatase Inhibitors/pharmacology , Biomarkers, Tumor/blood , Breast Neoplasms/blood , Breast Neoplasms/drug therapy , Breast Neoplasms/mortality , Case-Control Studies , Circulating Tumor DNA/blood , Drug Resistance, Neoplasm/genetics , Estrogen Receptor alpha/blood , Female , High-Throughput Nucleotide Sequencing/methods , Humans , Middle Aged , Mutation , Neoplasm Metastasis , Survival Analysis
2.
Breast Cancer Res Treat ; 188(2): 465-476, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34097174

ABSTRACT

PURPOSE: There is growing interest in the application of circulating tumour DNA (ctDNA) as a sensitive tool for monitoring tumour evolution and guiding targeted therapy in patients with cancer. However, robust comparisons of different platform technologies are still required. Here we compared the InVisionSeq™ ctDNA Assay with the Oncomine™ Breast cfDNA Assay to assess their concordance and feasibility for the detection of mutations in plasma at low (< 0.5%) variant allele fraction (VAF). METHODS: Ninety-six plasma samples from 50 patients with estrogen receptor (ER)-positive metastatic breast cancer (mBC) were profiled using the InVision Assay. Results were compared to the Oncomine assay in 30 samples from 26 patients, where there was sufficient material and variants were covered by both assays. Longitudinal samples were analysed for 8 patients with endocrine resistance. RESULTS: We detected alterations in 59/96 samples from 34/50 patients analysed with the InVision assay, most frequently affecting ESR1, PIK3CA and TP53. Complete or partial concordance was found in 28/30 samples analysed by both assays, and VAF values were highly correlated. Excellent concordance was found for most genes, and most discordant calls occurred at VAF < 1%. In longitudinal samples from progressing patients with endocrine resistance, we detected consistent alterations in sequential samples, most commonly in ESR1 and PIK3CA. CONCLUSION: This study shows that both ultra-deep next-generation sequencing (NGS) technologies can detect genomic alternations even at low VAFs in plasma samples of mBC patients. The strong agreement of the technologies indicates sufficient reproducibility for clinical use as prognosic and predictive biomarker.


Subject(s)
Breast Neoplasms , Circulating Tumor DNA , Biomarkers, Tumor/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Circulating Tumor DNA/genetics , Female , High-Throughput Nucleotide Sequencing , Humans , Reproducibility of Results
3.
Cytotherapy ; 22(12): 772-779.e1, 2020 12.
Article in English | MEDLINE | ID: mdl-33046395

ABSTRACT

The hospital exemption (HE) (Article 28(2) of Regulation (EC) No 1394/2007; the "ATMP Regulation") rule allows the invaluable opportunity to provide patients with access to innovative, potentially life-saving treatments in situations of unmet clinical need. Unlicensed, developmental advanced therapy medicinal products (ATMPs) - cell-, gene- or tissue-based therapies - can be used to treat patients under certain conditions. Such products should be produced on a non-routine basis, custom-made for an individual patient under the responsibility of the requesting physician, for use in a hospital setting within the same Member State in which they are manufactured. The HE rule, and the specific requirements permitting its use, is further regulated at the Member State level, which has led to divergence in the implementation of HE across the European Union (EU). As a result, HE use varies significantly across Member States depending on their respective national legal implementation, policy makers' interpretation of HE, clarity of guidance at the national level, reimbursement opportunities and level of ATMP research and development activities carried out by academic and commercial organizations. With important variations in how quality, safety and efficacy standards are implemented and controlled across EU Member States for ATMPs provided via the HE rule and a lack of transparency around its use, the HE rule draws concern around its potential impact on public health. In this article, the authors report results of a legal analysis of the implementation of HE across the UK, France, Germany, Italy, Spain, Poland and the Netherlands and research findings on its current utilization, highlighting divergences across countries as well as gaps in legislation and control in these countries. The significance of these divergences and the differing levels of enforcement are discussed as well as their associated impact on patients, industry and health care professionals.


Subject(s)
European Union , Hospitals , Social Control, Formal , Humans , Licensure , Pharmacovigilance
4.
Breast Cancer Res ; 21(1): 149, 2019 12 19.
Article in English | MEDLINE | ID: mdl-31856868

ABSTRACT

BACKGROUND: Breast cancer (BC) is the most common cancer in women, and despite the introduction of new screening programmes, therapies and monitoring technologies, there is still a need to develop more useful tests for monitoring treatment response and to inform clinical decision making. The purpose of this study was to compare circulating cell-free DNA (cfDNA) and circulating tumour cells (CTCs) with conventional breast cancer blood biomarkers (CA15-3 and alkaline phosphatase (AP)) as predictors of response to treatment and prognosis in patients with metastatic breast cancer (MBC). METHODS: One hundred ninety-four female patients with radiologically confirmed MBC were recruited to the study. Total cfDNA levels were determined by qPCR and compared with CELLSEARCH® CTC counts and CA15-3 and alkaline phosphatase (AP) values. Blood biomarker data were compared with conventional tumour markers, treatment(s) and response as assessed by RECIST and survival. Non-parametric statistical hypothesis tests were used to examine differences, correlation analysis and linear regression to determine correlation and to describe its effects, logistic regression and receiver operating characteristic curve (ROC curve) to estimate the strength of the relationship between biomarkers and clinical outcomes and value normalization against standard deviation to make biomarker values comparable. Kaplan-Meier estimator and Cox regression models were used to assess survival. Univariate and multivariate models were performed where appropriate. RESULTS: Multivariate analysis showed that both the amount of total cfDNA (p value = 0.024, HR = 1.199, CI = 1.024-1.405) and the number of CTCs (p value = 0.001, HR = 1.243, CI = 1.088-1.421) are predictors of overall survival (OS), whereas total cfDNA levels is the sole predictor for progression-free survival (PFS) (p value = 0.042, HR = 1.193, CI = 1.007-1.415) and disease response when comparing response to non-response to treatment (HR = 15.917, HR = 12.481 for univariate and multivariate analysis, respectively). Lastly, combined analysis of CTCs and cfDNA is more informative than the combination of two conventional biomarkers (CA15-3 and AP) for prediction of OS. CONCLUSION: Measurement of total cfDNA levels, which is a simpler and less expensive biomarker than CTC counts, is associated with PFS, OS and response in MBC, suggesting potential clinical application of a cheap and simple blood-based test.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms/genetics , Breast Neoplasms/mortality , Circulating Tumor DNA , Adult , Aged , Aged, 80 and over , Breast Neoplasms/diagnosis , Breast Neoplasms/therapy , Clinical Decision-Making , Disease Management , Female , Humans , Kaplan-Meier Estimate , Liquid Biopsy , Magnetic Resonance Imaging , Middle Aged , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Odds Ratio , Prognosis , Tomography, X-Ray Computed
5.
Clin Cancer Res ; 25(14): 4255-4263, 2019 07 15.
Article in English | MEDLINE | ID: mdl-30992300

ABSTRACT

PURPOSE: Up to 30% of patients with breast cancer relapse after primary treatment. There are no sensitive and reliable tests to monitor these patients and detect distant metastases before overt recurrence. Here, we demonstrate the use of personalized circulating tumor DNA (ctDNA) profiling for detection of recurrence in breast cancer. EXPERIMENTAL DESIGN: Forty-nine primary patients with breast cancer were recruited following surgery and adjuvant therapy. Plasma samples (n = 208) were collected every 6 months for up to 4 years. Personalized assays targeting 16 variants selected from primary tumor whole-exome data were tested in serial plasma for the presence of ctDNA by ultradeep sequencing (average >100,000X). RESULTS: Plasma ctDNA was detected ahead of clinical or radiologic relapse in 16 of the 18 relapsed patients (sensitivity of 89%); metastatic relapse was predicted with a lead time of up to 2 years (median, 8.9 months; range, 0.5-24.0 months). None of the 31 nonrelapsing patients were ctDNA-positive at any time point across 156 plasma samples (specificity of 100%). Of the two relapsed patients who were not detected in the study, the first had only a local recurrence, whereas the second patient had bone recurrence and had completed chemotherapy just 13 days prior to blood sampling. CONCLUSIONS: This study demonstrates that patient-specific ctDNA analysis can be a sensitive and specific approach for disease surveillance for patients with breast cancer. More importantly, earlier detection of up to 2 years provides a possible window for therapeutic intervention.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/diagnosis , Circulating Tumor DNA/genetics , High-Throughput Nucleotide Sequencing/methods , Mutation , Neoplasm Recurrence, Local/diagnosis , Precision Medicine , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/blood , Breast Neoplasms/blood , Breast Neoplasms/genetics , Breast Neoplasms/secondary , Circulating Tumor DNA/blood , Female , Humans , Middle Aged , Neoplasm Metastasis , Neoplasm Recurrence, Local/blood , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Prognosis , Prospective Studies
6.
Clin Cancer Res ; 23(1): 88-96, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27334837

ABSTRACT

PURPOSE: The purpose of this study was to directly compare mutation profiles in multiple single circulating tumor cells (CTC) and cell-free DNA (cfDNA) isolated from the same blood samples taken from patients with metastatic breast cancer (MBC). We aimed to determine whether cfDNA would reflect the heterogeneity observed in 40 single CTCs. EXPERIMENTAL DESIGN: CTCs were enumerated by CELLSEARCH. CTC count was compared with the quantity of matched cfDNA and serum CA15-3 and alkaline phosphatase (ALP) in 112 patients with MBC. In 5 patients with ≥100 CTCs, multiple individual EpCAM-positive CTCs were isolated by DEPArray and compared with matched cfDNA and primary tumor tissue by targeted next-generation sequencing (NGS) of about 2,200 mutations in 50 cancer genes. RESULTS: In the whole cohort, total cfDNA levels and cell counts (≥5 CTCs) were both significantly associated with overall survival, unlike CA15-3 and ALP. NGS analysis of 40 individual EpCAM-positive CTCs from 5 patients with MBC revealed mutational heterogeneity in PIK3CA, TP53, ESR1, and KRAS genes between individual CTCs. In all 5 patients, cfDNA profiles provided an accurate reflection of mutations seen in individual CTCs. ESR1 and KRAS gene mutations were absent from primary tumor tissue and therefore likely either reflect a minor subclonal mutation or were acquired with disease progression. CONCLUSIONS: Our results demonstrate that cfDNA reflects persisting EpCAM-positive CTCs in patients with high CTC counts and therefore may enable monitoring of the metastatic burden for clinical decision-making. Clin Cancer Res; 23(1); 88-96. ©2016 AACR.


Subject(s)
Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Cell Count , Circulating Tumor DNA , Mutation , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor , Breast Neoplasms/metabolism , DNA Mutational Analysis , Female , High-Throughput Nucleotide Sequencing , Humans , Middle Aged , Neoplasm Metastasis , Workflow
7.
Clin Chem ; 63(2): 532-541, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27940449

ABSTRACT

BACKGROUND: Breast cancer tissues are heterogeneous and show diverse somatic mutations and somatic copy number alterations (CNAs). We used a novel targeted next generation sequencing (NGS) panel to examine cell-free DNA (cfDNA) to detect somatic mutations and gene amplification in women with metastatic breast cancer (MBC). METHODS: cfDNA from pretreated patients (n = 42) and 9 healthy controls were compared with matched lymphocyte DNA by NGS, using a custom 158 amplicon panel covering hot-spot mutations and CNAs in 16 genes, with further validation of results by droplet digital PCR. RESULTS: No mutations were identified in cfDNA of healthy controls, whereas exactly half the patients with metastatic breast cancer had at least one mutation or amplification in cfDNA (mean 2, range 1-6) across a total of 13 genes. Longitudinal follow up showed dynamic changes to mutations and gene amplification in cfDNA indicating clonal and subclonal response to treatment that was more dynamic than cancer antigen 15-3 (CA15-3). Interestingly, at the time of blood sampling disease progression was occurring in 7 patients with erb-b2 receptor tyrosine kinase 2 (ERBB2) gene amplification in their cfDNA and 3 of these patients were human epidermal growth factor receptor 2 (HER2) negative at diagnosis, suggesting clonal evolution to a more aggressive phenotype. Lastly, 6 patients harbored estrogen receptor 1 (ESR1) mutations in cfDNA, suggesting resistance to endocrine therapy. Overall 9 of 42 patients (21%) had alterations in cfDNA that could herald a change in treatment. CONCLUSIONS: Targeted NGS of cfDNA has potential for monitoring response to targeted therapies through both mutations and gene amplification, for analysis of dynamic tumor heterogeneity and stratification to targeted therapy.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , DNA, Neoplasm/genetics , High-Throughput Nucleotide Sequencing , Neoplasm Metastasis/genetics , Sequence Analysis, DNA , Adult , Aged , Aged, 80 and over , DNA, Neoplasm/blood , Female , Gene Expression Profiling , Humans , Middle Aged , Mutation , Particle Size , Polymerase Chain Reaction
8.
Clin Chem ; 61(7): 974-82, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25979954

ABSTRACT

BACKGROUND: Activating mutations in the estrogen receptor 1 (ESR1) gene are acquired on treatment and can drive resistance to endocrine therapy. Because of the spatial and temporal limitations of needle core biopsies, our goal was to develop a highly sensitive, less invasive method of detecting activating ESR1 mutations via circulating cell-free DNA (cfDNA) and tumor cells as a "liquid biopsy." METHODS: We developed a targeted 23-amplicon next-generation sequencing (NGS) panel for detection of hot-spot mutations in ESR1, phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA), tumor protein p53 (TP53), fibroblast growth factor receptor 1 (FGFR1), and fibroblast growth factor receptor 2 (FGFR2) in 48 patients with estrogen receptor-α-positive metastatic breast cancer who were receiving systemic therapy. Selected mutations were validated using droplet digital PCR (ddPCR). RESULTS: Nine baseline cfDNA samples had an ESR1 mutation. NGS detected 3 activating mutations in ESR1, and 3 hot-spot mutations in PIK3CA, and 3 in TP53 in baseline cfDNA, and the ESR1 p.D538G mutation in 1 matched circulating tumor cell sample. ddPCR analysis was more sensitive than NGS and identified 6 additional baseline cfDNA samples with the ESR1 p.D538G mutation at a frequency of <1%. In serial blood samples from 11 patients, 4 showed changes in cfDNA, 2 with emergence of a mutation in ESR1. We also detected a low frequency ESR1 mutation (1.3%) in cfDNA of 1 primary patient who was thought to have metastatic disease but was clear by scans. CONCLUSIONS: Early identification of ESR1 mutations by liquid biopsy might allow for cessation of ineffective endocrine therapies and switching to other treatments, without the need for tissue biopsy and before the emergence of metastatic disease.


Subject(s)
Breast Neoplasms/genetics , DNA Mutational Analysis/methods , Estrogen Receptor alpha/genetics , Mutation , Neoplastic Cells, Circulating , Breast Neoplasms/pathology , Class I Phosphatidylinositol 3-Kinases , Estrogen Receptor alpha/blood , Female , High-Throughput Nucleotide Sequencing/methods , Humans , Neoplastic Cells, Circulating/pathology , Phosphatidylinositol 3-Kinases/genetics , Reproducibility of Results , Tumor Suppressor Protein p53/genetics
10.
PLoS One ; 8(10): e77963, 2013.
Article in English | MEDLINE | ID: mdl-24205045

ABSTRACT

Circulating nucleic acids (CNAs) are under investigation as a liquid biopsy in cancer. However there is wide variation in blood processing and methods for isolation of circulating free DNA (cfDNA) and microRNAs (miRNAs). Here we compare the extraction efficiency and reproducibility of 4 commercially available kits for cfDNA and 3 for miRNA using spike-in of reference templates. We also compare the effects of increasing time between venepuncture and centrifugation and differential centrifugation force on recovery of CNAs. cfDNA was quantified by TaqMan qPCR and targeted deep sequencing. miRNA profiles were assessed with TaqMan low-density arrays and assays. The QIAamp(®) DNA Blood Mini and Circulating nucleic acid kits gave the highest recovery of cfDNA and efficient recovery (>90%) of a 564bp spike-in. Moreover, targeted sequencing revealed overlapping cfDNA profiles and variant depth, including detection of HER2 gene amplification, using the Ion AmpliSeq™Cancer Hotspot Panel v2. Highest yields of miRNA and the synthetic Arabidopsis thaliana miR-159a spike-in were obtained using the miRNeasy Serum/Plasma kit, with saturation above 200 µl of plasma. miRNA profiles showed significant variation with increasing time before centrifugation (p<0.001) and increasing centrifugation force, with depletion of platelet associated miRNAs, whereas cfDNA was unaffected. However, sample replicates showed excellent reproducibility on TaqMan low density arrays (ρ = 0.96, p<0.0001). We also successfully generated miRNA profiles for plasma samples stored > 12 years, highlighting the potential for analysis of stored sample biobanks. In the era of the liquid biopsy, standardisation of methods is required to minimise variation, particularly for miRNA.


Subject(s)
Blood Specimen Collection/methods , Breast Neoplasms/genetics , DNA, Neoplasm/blood , DNA, Neoplasm/isolation & purification , MicroRNAs/genetics , Breast Neoplasms/blood , Breast Neoplasms/pathology , DNA, Neoplasm/genetics , Female , High-Throughput Nucleotide Sequencing , Humans , Reagent Kits, Diagnostic , Reproducibility of Results
11.
Cancer Res ; 73(13): 3888-901, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23598279

ABSTRACT

Heterogeneity of carcinoma-associated fibroblasts (CAF) has long been recognized, but the functional significance remains poorly understood. Here, we report the distinction of two CAF subtypes in oral squamous cell carcinoma (OSCC) that have differential tumor-promoting capability, one with a transcriptome and secretome closer to normal fibroblasts (CAF-N) and the other with a more divergent expression pattern (CAF-D). Both subtypes supported higher tumor incidence in nonobese diabetic/severe combined immunodeficient (NOD/SCID) Ilγ2(null) mice and deeper invasion of malignant keratinocytes than normal or dysplasia-associated fibroblasts, but CAF-N was more efficient than CAF-D in enhancing tumor incidence. CAF-N included more intrinsically motile fibroblasts maintained by high autocrine production of hyaluronan. Inhibiting CAF-N migration by blocking hyaluronan synthesis or chain elongation impaired invasion of adjacent OSCC cells, pinpointing fibroblast motility as an essential mechanism in this process. In contrast, CAF-D harbored fewer motile fibroblasts but synthesized higher TGF-ß1 levels. TGF-ß1 did not stimulate CAF-D migration but enhanced invasion and expression of epithelial-mesenchymal transition (EMT) markers in malignant keratinocytes. Inhibiting TGF-ß1 in three-dimensional cultures containing CAF-D impaired keratinocyte invasion, suggesting TGF-ß1-induced EMT mediates CAF-D-induced carcinoma cell invasion. TGF-ß1-pretreated normal fibroblasts also induced invasive properties in transformed oral keratinocytes, indicating that TGF-ß1-synthesizing fibroblasts, as well as hyaluronan-synthesizing fibroblasts, are critical for carcinoma invasion. Taken together, these results discern two subtypes of CAF that promote OSCC cell invasion via different mechanisms.


Subject(s)
Carcinoma, Squamous Cell/pathology , Fibroblasts/metabolism , Mouth Neoplasms/pathology , Animals , Benzamides/pharmacology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/mortality , Cell Movement , Dioxoles/pharmacology , Epithelial-Mesenchymal Transition , Fibroblasts/classification , Fibroblasts/physiology , Gene Expression , Hyaluronic Acid/metabolism , Kaplan-Meier Estimate , Mice , Mice, Inbred NOD , Mice, SCID , Mouth Neoplasms/metabolism , Mouth Neoplasms/mortality , Neoplasm Invasiveness , Neoplasm Transplantation , Receptors, Transforming Growth Factor beta/antagonists & inhibitors , Receptors, Transforming Growth Factor beta/genetics , Receptors, Transforming Growth Factor beta/metabolism , Transcriptome , Transforming Growth Factor beta1/physiology , Tumor Cells, Cultured
12.
Cancer Metastasis Rev ; 32(1-2): 289-302, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23108389

ABSTRACT

Breast cancer treatment is improving due to the introduction of new drugs, guided by molecular testing of the primary tumour for mutations/oncogenic drivers (e.g. HER2 gene amplification). However, tumour tissue is not always available for molecular analysis, intra-tumoural heterogeneity is common and the "cancer genome" is known to evolve with time, particularly following treatment as resistance develops. After resection, those patients with only residual micrometastases are likely to be cured but those with radiologically detectable overt disease are not. Thus, the discovery of blood test(s) that could (1) alert clinicians to early primary or recurrent disease and (2) monitor response to treatment could impact significantly on mortality. Towards this, we and others have focused on molecular profiling of circulating nucleic acids isolated from plasma, both cell-free DNA (cfDNA) and microRNAs, and the relationship of these to circulating tumour cells (CTCs). This review considers the utility of each as circulating biomarkers in breast cancer with particular emphasis on the bioinformatic tools available to support molecular profiling.


Subject(s)
Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Breast Neoplasms/pathology , DNA/blood , Female , Humans , MicroRNAs/blood , Neoplasm Metastasis , Neoplastic Cells, Circulating , Principal Component Analysis
13.
Clin Cancer Res ; 13(20): 6099-106, 2007 Oct 15.
Article in English | MEDLINE | ID: mdl-17947474

ABSTRACT

PURPOSE: Application of ultrasensitive diagnostics has shown that small numbers of p53 mutation-positive cells may signify the presence of residual tumor in histologically normal tissues after resection of squamous cell carcinomas arising in the head and neck area. To date, most studies in this area have focused on analysis of tissues at the mucosal aspect of the resection and highlighted the importance of molecular changes in the field with respect to the risk of recurrence. EXPERIMENTAL DESIGN: In the present investigation, we analyzed normal tissues from mucosal and deep surgical margins, referred to as "molecular margins," for the presence of the signature p53 mutation identified for each tumor. RESULTS: The p53 mutation status of these carcinomas did not correlate with clinical or histopathologic variables, but these mutations provided an excellent target for ultrasensitive analysis of margin status. We found that 11 of 16 (68%) of cases with histologically tumor-free (including 9 without dysplasia), but with p53 mutation-positive molecular margins, developed recurrence. The probability of developing local recurrence was significantly higher for the group with p53 mutation-positive margins when compared with the group with clear margins (P = 0.048) and more strongly associated with p53 mutation-positive deep molecular margins than mutation-positive mucosal molecular margins or positivity at both sites (P = 0.009). CONCLUSIONS: This shows that although persistent mucosal fields may contribute to recurrence, clonal p53 mutations in deep tissues are an important cause of treatment failure, and molecular margins from both sites should be analyzed in future prospective series.


Subject(s)
Genes, p53 , Mucous Membrane/metabolism , Mutation , Neoplasms/genetics , Neoplasms/pathology , Adult , Aged , Aged, 80 and over , DNA Mutational Analysis , Female , Humans , Male , Middle Aged , Neoplasms/diagnosis , Predictive Value of Tests , Recurrence , Sensitivity and Specificity
14.
Cancer Res ; 67(15): 7284-94, 2007 Aug 01.
Article in English | MEDLINE | ID: mdl-17671197

ABSTRACT

There is no effective medical treatment for oral precancer, and surgery to remove these lesions is imprecise because abnormal mucosa extends beyond the visible lesion. Development of vectors for tumor-selective viral replication has been a significant advance, and viral lysis is well suited to destruction of oral precancerous mucosa. To facilitate evaluation of new treatments, we engineered dysplastic oral epithelium using keratinocytes isolated from dysplastic lesions. We show that these model systems recapitulate the key characteristics of the clinical lesions closely, and that topical delivery of the conditionally replicating adenovirus (CRAd) dl922-947 can lyse tissue-engineered epithelia that show mild, moderate, or severe dysplasia, but normal oral epithelia are very resistant to this treatment. The lytic effect is determined by various factors, including the grade and proliferation index of the dysplastic epithelia. The presence of suprabasal cycling cells, expression of the coxsackie adenovirus receptor (CAR), the transcription cofactor p300, and other aberrations that affect the regulation of the cell cycle or apoptosis and promote viral replication may also be important. The ability of dl922-947 to destroy engineered oral dysplasia was significantly greater than that observed using wild-type adenovirus, d/1520, or viruses modified to bypass cell entry dependent on the presence of CAR. Evidence of infection in clinical dysplastic lesions was also shown ex vivo using tissue explants. We conclude that dl922-947 may provide an efficient molecular cytotoxic to dissolve oral dysplastic lesions.


Subject(s)
Adenoviridae/physiology , Leukoplakia, Oral/metabolism , Mouth Mucosa/metabolism , Precancerous Conditions/metabolism , Tissue Engineering , Virus Replication , Adenoviridae/pathogenicity , Adenoviridae Infections/genetics , Adenoviridae Infections/therapy , Adenoviridae Infections/virology , Cell Survival , DNA, Viral/genetics , Humans , Keratinocytes/cytology , Keratinocytes/metabolism , Keratinocytes/virology , Leukoplakia, Oral/pathology , Mouth Mucosa/pathology , Organ Culture Techniques , Precancerous Conditions/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...