Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; 8(12): 2100214, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34194945

ABSTRACT

Lead halide perovskite (LHP) nanocrystals (NCs) have recently garnered enhanced development efforts from research disciplines owing to their superior optical and optoelectronic properties. These materials, however, are unlike conventional quantum dots, because they possess strong ionic character, labile ligand coverage, and overall stability issues. As a result, the system as a whole is highly dynamic and can be affected by slight changes of particle surface environment. Specifically, the surface ligand shell of LHP NCs has proven to play imperative roles throughout the lifetime of a LHP NC. Recent advances in engineering and understanding the roles of surface ligand shells from initial synthesis, through postsynthetic processing and device integration, finally to application performances of colloidal LHP NCs are covered here.

2.
Nano Lett ; 21(4): 1620-1627, 2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33570415

ABSTRACT

Morphology control represents an important strategy for the development of functional nanomaterials and has yet to be achieved in the case of promising lead-free double perovskite materials so far. In this work, high-quality Cs2AgBiX6 (X = Cl, Br, I) two-dimensional nanoplatelets were synthesized through a newly developed synthetic procedure. By analyzing the optical, morphological, and structural evolutions of the samples during synthesis, we elucidated that the growth mechanism of lead-free double perovskite nanoplatelets followed a lateral growth process from mono-octahedral-layer (half-unit-cell in thickness) cluster-based nanosheets to multilayer (three to four unit cells in thickness) nanoplatelets. Furthermore, we demonstrated that Cs2AgBiBr6 nanoplatelets possess a better performance in photocatalytic CO2 reduction compared with their nanocube counterpart. Our work demonstrates the first example with two-dimensional morphology of this important class of lead-free perovskite materials, shedding light on the synthetic manipulation and the application integration of such promising materials.

3.
Nanoscale ; 12(45): 23191-23199, 2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33201164

ABSTRACT

Lead-free perovskites and their analogues have been extensively studied as a class of next-generation luminescent and optoelectronic materials. Herein, we report the synthesis of new colloidal Cs4M(ii)Bi2Cl12 (M(ii) = Cd, Mn) nanocrystals (NCs) with unique luminescence properties. The obtained Cs4M(ii)Bi2Cl12 NCs show a layered double perovskite (LDP) crystal structure with good particle stability. Density functional theory calculations show that both samples exhibit a wide, direct bandgap feature. Remarkably, the strong Mn-Mn coupling effect of the Cs4M(ii)Bi2Cl12 NCs results in an ultra-short Mn photoluminescence (PL) decay lifetime of around 10 µs, around two orders of magnitude faster than commonly observed Mn2+ dopant emission in NCs. Diluting the Mn2+ ion concentration through forming Cs4(Cd1-xMnx)Bi2Cl12 (0 < x < 1) alloyed LDP NCs leads to prolonged PL lifetimes and enhanced PL quantum yields. Our study provides the first synthetic example of Bi-based LDP colloidal NCs with potential for serving as a new category of stable lead-free perovskite-type materials for various applications.

4.
Adv Sci (Weinh) ; 7(18): 2001317, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32999842

ABSTRACT

Doping metal ions into lead halide perovskite nanocrystals (NCs) has attracted great attention over the past few years due to the emergence of novel properties relevant to optoelectronic applications. Here, the synthesis of Mn2+/Yb3+ codoped CsPbCl3 NCs through a hot-injection technique is reported. The resulting NCs show a unique triple-wavelength emission covering ultraviolet/blue, visible, and near-infrared regions. By optimizing the dopant concentrations, the total photoluminescence quantum yield (PL QY) of the codoped NCs can reach ≈125.3% due to quantum cutting effects. Mechanism studies reveal the efficient energy transfer processes from host NCs to Mn2+ and Yb3+ dopant ions, as well as a possible inter-dopant energy transfer from Mn2+ to Yb3+ ion centers. Owing to the high PL QYs and minimal reabsorption loss, the codoped perovskite NCs are demonstrated to be used as efficient emitters in luminescent solar concentrators, with greatly enhanced external optical efficiency compared to that of using solely Mn2+ doped CsPbCl3 NCs. This study presents a new model system for enriching doping chemistry studies and future applications of perovskite NCs.

5.
Angew Chem Int Ed Engl ; 59(50): 22563-22569, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-32852841

ABSTRACT

Semiconductor quantum dots (QDs) have attracted tremendous attention in the field of photocatalysis, owing to their superior optoelectronic properties for photocatalytic reactions, including high absorption coefficients and long photogenerated carrier lifetimes. Herein, by choosing 2-(3,4-dimethoxyphenyl)-3-oxobutanenitrile as a model substrate, we demonstrate that the stereoselective (>99 %) C-C oxidative coupling reaction can be realized with a high product yield (99 %) using zwitterionic ligand capped CsPbBr3 perovskite QDs under visible light illumination. The reaction can be generalized to different starting materials with various substituents on the phenyl ring and varied functional moieties, producing stereoselective dl-isomers. A radical mediated reaction pathway has been proposed. Our study provides a new way of stereoselective C-C oxidative coupling via a photocatalytic means using specially designed perovskite QDs.

6.
J Am Chem Soc ; 142(27): 11927-11936, 2020 Jul 08.
Article in English | MEDLINE | ID: mdl-32510205

ABSTRACT

Concerns about the toxicity of lead-based perovskites have aroused great interest for the development of alternative lead-free perovskite-type materials. Recently, theoretical calculations predict that Pb2+ cations can be substituted by a combination of Cu2+ and Sb3+ cations to form a vacancy-ordered layered double perovskite structure with superior optoelectronic properties. However, accessibilities to this class of perovskite-type materials remain inadequate, hindering their practical implementations in various applications. Here, we report the first colloidal synthesis of Cs4CuSb2Cl12 perovskite-type nanocrystals (NCs). The resulting NCs exhibit a layered double perovskite structure with ordered vacancies and a direct band gap of 1.79 eV. A composition-structure-property relationship has been established by investigating a series of Cs4CuxAg2-2xSb2Cl12 perovskite-type NCs (0 ≤ x ≤ 1). The composition induced crystal structure transformation, and thus, the electronic band gap evolution has been explored by experimental observations and further confirmed by theoretical calculations. Taking advantage of both the unique electronic structure and solution processability, we demonstrate that the Cs4CuSb2Cl12 NCs can be solution-processed as high-speed photodetectors with ultrafast photoresponse and narrow bandwidth. We anticipate that our study will prompt future research to design and fabricate novel and high-performance lead-free perovskite-type NCs for a range of applications.

7.
ACS Appl Mater Interfaces ; 11(18): 16855-16863, 2019 May 08.
Article in English | MEDLINE | ID: mdl-30985112

ABSTRACT

Lead-free double perovskite nanocrystals (NCs) have emerged as a new category of materials that hold the potential for overcoming the instability and toxicity issues of lead-based counterparts. Doping chemistry represents a unique avenue toward tuning and optimizing the intrinsic optical and electronic properties of semiconductor materials. In this study, we report the first example of doping Yb3+ ions into lead-free double perovskite Cs2AgBiX6 (X = Cl-, Br-) NCs via a hot injection method. The doping of Yb3+ endows the double perovskite NCs with a newly emerged near-infrared emission band (sensitized from the NC hosts) in addition to their intrinsic trap-related visible photoluminescence. By controlling the Yb-doping concentration, the dual emission profiles and photon relaxation dynamics of the double perovskite NCs can be systematically tuned. Furthermore, we have successfully inserted divalent Mn2+ ions in Cs2AgBiCl6 NCs and observed emergence of dopant emission. Our work illustrates an effective and facile route toward modifying and optimizing optical properties of double perovskite Cs2AgBiX6 (X = Cl-, Br-) NCs with an indirect bandgap nature, which can broaden a range of their potential applications in optoelectronic devices.

8.
J Phys Chem Lett ; 9(24): 7079-7084, 2018 Dec 20.
Article in English | MEDLINE | ID: mdl-30509067

ABSTRACT

Doped lead halide perovskite nanocrystals (NCs) have garnered significant attention due to their superior optoelectronic properties. Here, we report a synthesis of Cd-doped CsPbCl3 NCs by decoupling Pb- and Cl-precursors in a hot injection method. The resulting Cd-doped perovskite NCs manifest a dual-wavelength emission profile with the first reported example of Cd-dopant emission. By controlling Cd-dopant concentration, the emission profile can be tuned with a dopant emission quantum yield of up to 8%. A new secondary emission (∼610 nm) is induced by an energy transfer process from photoexcited hosts to Cd-dopants and a subsequent electronic transition from the excited state (3Eg) to the ground state (1A1g) of [CdCl6]4- units. This electronic transition matches well with a first-principles density functional theory calculation. Further, the optical behavior of Cd-doped CsPbCl3 NCs can be altered through postsynthetic anion-exchange reactions. Our studies present a new model system for doping chemistry studies in semiconductors for various optoelectronic applications.

9.
Nano Lett ; 18(8): 5049-5056, 2018 08 08.
Article in English | MEDLINE | ID: mdl-29989818

ABSTRACT

The self-assembly of nanocrystals into ordered superlattices is a powerful strategy for the production of functional nanomaterials. The assembly of well-ordered target structures, however, requires control over the building blocks' size and shape as well as their interactions. While nanocrystals with homogeneous composition are now routinely synthesized with high precision and assembled into various ordered structures, high-quality multicomponent nanocrystals and their ordered assemblies are rarely reported. In this paper, we demonstrate the synthesis of quantum dot-gold (QD-Au) heterodimers. These heterodimers possess a uniform shape and narrow size distribution and are capped with oleylamine and dodecyltrimethylammonium bromide (DTAB). Assembly of the heterodimers results in a superlattice with long-range orientational alignment of dimers. Using synchrotron-based X-ray measurements, we characterize the complex superstructure formed from the dimers. Molecular dynamics simulations of a coarse-grained model suggest that anisotropic interactions between the quantum dot and gold components of the dimer drive superlattice formation. The high degree of orientational order demonstrated in this work is a potential route to nanomaterials with useful optoelectronic properties.

10.
J Am Chem Soc ; 139(25): 8408-8411, 2017 06 28.
Article in English | MEDLINE | ID: mdl-28594551

ABSTRACT

This report presents the fabrication and pressure-driven processing of heterostructural nanocrystal superlattices (HNC-SLs) self-assembled from quantum-dot-Au (QD-Au) satellite-type HNCs. In situ small/wide-angle X-ray scattering and electron microscopic measurements showed that the HNC-SLs underwent structural transformation at both atomic- and mesoscales during the pressure processing. Upon deviatoric stress-driven orientational migration, the intraparticle coalescence of Au satellites at QD surfaces transforms individual HNCs into heterodimers, whereas the interparticle fusion drives assembled HNCs into ordered heterorod arrays. These results demonstrate high-pressure-processing as a clean and fast means for conversion of HNCs into novel heteromaterials that are difficult to achieve through conventional synthetic routes.

11.
Adv Mater ; 29(18)2017 May.
Article in English | MEDLINE | ID: mdl-28295682

ABSTRACT

Lead halide perovskites are promising materials for a range of applications owing to their unique crystal structure and optoelectronic properties. Understanding the relationship between the atomic/mesostructures and the associated properties of perovskite materials is crucial to their application performances. Herein, the detailed pressure processing of CsPbBr3 perovskite nanocube superlattices (NC-SLs) is reported for the first time. By using in situ synchrotron-based small/wide angle X-ray scattering and photoluminescence (PL) probes, the NC-SL structural transformations are correlated at both atomic and mesoscale levels with the band-gap evolution through a pressure cycle of 0 ↔ 17.5 GPa. After the pressurization, the individual CsPbBr3 NCs fuse into 2D nanoplatelets (NPLs) with a uniform thickness. The pressure-synthesized perovskite NPLs exhibit a single cubic crystal structure, a 1.6-fold enhanced photoluminescence quantum yield, and a longer emission lifetime than the starting NCs. This study demonstrates that pressure processing can serve as a novel approach for the rapid conversion of lead halide perovskites into structures with enhanced properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...