Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(12): e0260273, 2021.
Article in English | MEDLINE | ID: mdl-34910750

ABSTRACT

Passive acoustic monitoring is an important tool for studying marine mammals. Ocean bottom seismometer networks provide data sets of opportunity for studying blue whales (Balaenoptera musculus) which vocalize extensively at seismic frequencies. We describe methods to localize calls and obtain tracks using the B call of northeast Pacific blue whale recorded by a large network of widely spaced ocean bottom seismometers off the coast of the Pacific Northwest. The first harmonic of the B call at ~15 Hz is detected using spectrogram cross-correlation. The seasonality of calls, inferred from a dataset of calls identified by an analyst, is used to estimate the probability that detections are true positives as a function of the strength of the detection. Because the spacing of seismometers reaches 70 km, faint detections with a significant probability of being false positives must be considered in multi-station localizations. Calls are located by maximizing a likelihood function which considers each strong detection in turn as the earliest arrival time and seeks to fit the times of detections that follow within a feasible time and distance window. An alternative procedure seeks solutions based on the detections that maximize their sum after weighting by detection strength and proximity. Both approaches lead to many spurious solutions that can mix detections from different B calls and include false detections including misidentified A calls. Tracks that are reliable can be obtained iteratively by assigning detections to localizations that are grouped in space and time, and requiring groups of at least 20 locations. Smooth paths are fit to tracks by including constraints that minimize changes in speed and direction while fitting the locations to their uncertainties or applying the double difference relocation method. The reliability of localizations for future experiments might be improved by increasing sampling rates and detecting harmonics of the B call.


Subject(s)
Balaenoptera/physiology , Sound Spectrography/methods , Algorithms , Animals , Oceans and Seas , Vocalization, Animal
2.
J Acoust Soc Am ; 142(4): 2101, 2017 10.
Article in English | MEDLINE | ID: mdl-29092576

ABSTRACT

A semi-automated method is described to range to vocalizing fin whales using the timing and amplitude of multipath arrivals measured on seafloor receivers. Calls are detected and multipath arrivals identified with a matched filter. Multipath times and relative amplitudes are predicted as a function of range by ray tracing. Because the direct and first water-column multiple arrivals are not always observed, different hypotheses for the observed arrival paths must be considered. For two arrivals, an amplitude threshold is used to determine if the first arrival is the direct path and if not, the call is disregarded as distant. When three or more arrivals are detected, three hypotheses for the paths of arrivals are considered; the solution is the hypothesis and range that minimizes the timing and optionally, amplitude ratio or absolute amplitude residual. The method is tested with data from two ocean bottom seismometers, one on the Juan de Fuca Ridge and the other in the Cascadia Basin. Solutions obtained by minimizing a combined residual from timing and an empirical absolute amplitude model extracted from the data yield reliable ranges up to 5 km at both sites, and are sufficient to estimate call density using point transect distance sampling.


Subject(s)
Acoustics , Environmental Monitoring/methods , Fin Whale/physiology , Signal Processing, Computer-Assisted , Vocalization, Animal , Animals , Automation , Fin Whale/classification , Motion , Sound , Sound Spectrography , Time Factors , Vocalization, Animal/classification
3.
PLoS One ; 12(10): e0186127, 2017.
Article in English | MEDLINE | ID: mdl-29073230

ABSTRACT

In order to study the long-term stability of fin whale (Balaenoptera physalus) singing behavior, the frequency and inter-pulse interval of fin whale 20 Hz vocalizations were observed over 10 years from 2003-2013 from bottom mounted hydrophones and seismometers in the northeast Pacific Ocean. The instrument locations extended from 40°N to 48°N and 130°W to 125°W with water depths ranging from 1500-4000 m. The inter-pulse interval (IPI) of fin whale song sequences was observed to increase at a rate of 0.54 seconds/year over the decade of observation. During the same time period, peak frequency decreased at a rate of 0.17 Hz/year. Two primary call patterns were observed. During the earlier years, the more commonly observed pattern had a single frequency and single IPI. In later years, a doublet pattern emerged, with two dominant frequencies and IPIs. Many call sequences in the intervening years appeared to represent a transitional state between the two patterns. The overall trend was consistent across the entire geographical span, although some regional differences exist. Understanding changes in acoustic behavior over long time periods is needed to help establish whether acoustic characteristics can be used to help determine population identity in a widely distributed, difficult to study species such as the fin whale.


Subject(s)
Fin Whale/physiology , Vocalization, Animal , Animals , Pacific Ocean , Sound Spectrography
SELECTION OF CITATIONS
SEARCH DETAIL
...