Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 9(7): 6978-84, 2015 Jul 28.
Article in English | MEDLINE | ID: mdl-26090689

ABSTRACT

X-ray nanobeams are unique nondestructive probes that allow direct measurements of the nanoscale strain distribution and composition inside the micrometer thick layered structures that are found in most electronic device architectures. However, the method is usually extremely time-consuming, and as a result, data sets are often constrained to a few or even single objects. Here we demonstrate that by special design of a nanofocused X-ray beam diffraction experiment we can (in a single 2D scan with no sample rotation) measure the individual strain and composition profiles of many structures in an array of upright standing nanowires. We make use of the observation that in the generic nanowire device configuration, which is found in high-speed transistors, solar cells, and light-emitting diodes, each wire exhibits very small degrees of random tilts and twists toward the substrate. Although the tilt and twist are very small, they give a new contrast mechanism between different wires. In the present case, we image complex nanowires for nanoLED fabrication and compare to theoretical simulations, demonstrating that this fast method is suitable for real nanostructured devices.

2.
ACS Nano ; 9(5): 5422-31, 2015 May 26.
Article in English | MEDLINE | ID: mdl-25880600

ABSTRACT

Using in situ surface-sensitive electron microscopy performed in real time, we show that the dynamics of micron-sized Ga droplets on GaP(111) can be manipulated locally using Au nanoparticles. Detailed measurements of structure and dynamics of the surface from microns to atomic scale are done using both surface electron and scanning probe microscopies. Imaging is done simultaneously on areas with and without Au particles and on samples spanning an order of magnitude in particle coverages. Based on this, we establish the equations of motion that can generally describe the Ga droplet dynamics, taking into account three general features: the affinity of Ga droplets to cover steps and rough structures on the surface, the evaporation-driven transition of the surface nanoscale morphology from rough to flat, and the enhanced evaporation due to Ga droplets and Au nanoparticles. Separately, these features can induce either self-propelled random motion or directional motion, but in combination, the self-propelled motion acts to increase the directional motion even if the directional force is 100 times weaker than the random force. We then find that the Au particles initiate a faster native oxide desorption and speed up the rough to flat surface transition in their vicinity. This changes the balance of forces on the Ga droplets near the Au particles, effectively deflecting the droplets from these areas. The model is experimentally verified for the present materials system, but due to its very general assumptions, it could also be relevant for the many other materials systems that display self-propelled random motion.

3.
Nano Lett ; 10(11): 4443-9, 2010 Nov 10.
Article in English | MEDLINE | ID: mdl-20939507

ABSTRACT

Group III-V nanowires offer the exciting possibility of epitaxial growth on a wide variety of substrates, most importantly silicon. To ensure compatibility with Si technology, catalyst-free growth schemes are of particular relevance, to avoid impurities from the catalysts. While this type of growth is well-documented and some aspects are described, no detailed understanding of the nucleation and the growth mechanism has been developed. By combining a series of growth experiments using metal-organic vapor phase epitaxy, as well as detailed in situ surface imaging and spectroscopy, we gain deeper insight into nucleation and growth of self-seeded III-V nanowires. By this mechanism most work available in literature concerning this field can be described.


Subject(s)
Crystallization/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Nanotechnology/methods , Catalysis , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Surface Properties
4.
Nano Lett ; 9(7): 2710-4, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19507835

ABSTRACT

We establish a new mechanism for self-propelled motion of droplets, in which ordering of the nanoscale step morphology by sublimation beneath the droplets themselves acts to drive them perpendicular and up the surface steps. The mechanism is demonstrated and explored for Ga droplets on GaP(111)B, using several experimental techniques allowing studies of the structure and dynamics from micrometers to the atomic scale. We argue that the simple assumptions underlying the propulsion mechanism make it relevant for a wide variety of materials systems.


Subject(s)
Microfluidics , Motion , Nanotechnology , Gallium/chemistry , Hot Temperature , Microscopy, Electron, Scanning , Models, Theoretical , Nanotechnology/methods , Surface Properties
5.
Nano Lett ; 8(11): 3978-82, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18850752

ABSTRACT

We have succeeded in direct atomic scale imaging of the exterior surfaces of III-V nanowires by scanning tunneling microscopy (STM). By using atomic hydrogen, we expose the crystalline surfaces of InAs nanowires with regular InP segments in vacuum while retaining the wire morphology. We show images with atomic resolution of the two major types of InAs wurtzite nanowire surface facets and scanning tunneling spectroscopy (STS) data. Ab initio calculations of the lowest energy surface structures and simulated STM images, agree very well with experiments.

SELECTION OF CITATIONS
SEARCH DETAIL
...