Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 10738, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38730226

ABSTRACT

A drug molecule is a substance that changes an organism's mental or physical state. Every approved drug has an indication, which refers to the therapeutic use of that drug for treating a particular medical condition. While the Large Language Model (LLM), a generative Artificial Intelligence (AI) technique, has recently demonstrated effectiveness in translating between molecules and their textual descriptions, there remains a gap in research regarding their application in facilitating the translation between drug molecules and indications (which describes the disease, condition or symptoms for which the drug is used), or vice versa. Addressing this challenge could greatly benefit the drug discovery process. The capability of generating a drug from a given indication would allow for the discovery of drugs targeting specific diseases or targets and ultimately provide patients with better treatments. In this paper, we first propose a new task, the translation between drug molecules and corresponding indications, and then test existing LLMs on this new task. Specifically, we consider nine variations of the T5 LLM and evaluate them on two public datasets obtained from ChEMBL and DrugBank. Our experiments show the early results of using LLMs for this task and provide a perspective on the state-of-the-art. We also emphasize the current limitations and discuss future work that has the potential to improve the performance on this task. The creation of molecules from indications, or vice versa, will allow for more efficient targeting of diseases and significantly reduce the cost of drug discovery, with the potential to revolutionize the field of drug discovery in the era of generative AI.


Subject(s)
Artificial Intelligence , Drug Discovery , Humans , Drug Discovery/methods , Pharmaceutical Preparations/chemistry
2.
NPJ Digit Med ; 6(1): 225, 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38042910

ABSTRACT

In 2020, the U.S. Department of Defense officially disclosed a set of ethical principles to guide the use of Artificial Intelligence (AI) technologies on future battlefields. Despite stark differences, there are core similarities between the military and medical service. Warriors on battlefields often face life-altering circumstances that require quick decision-making. Medical providers experience similar challenges in a rapidly changing healthcare environment, such as in the emergency department or during surgery treating a life-threatening condition. Generative AI, an emerging technology designed to efficiently generate valuable information, holds great promise. As computing power becomes more accessible and the abundance of health data, such as electronic health records, electrocardiograms, and medical images, increases, it is inevitable that healthcare will be revolutionized by this technology. Recently, generative AI has garnered a lot of attention in the medical research community, leading to debates about its application in the healthcare sector, mainly due to concerns about transparency and related issues. Meanwhile, questions around the potential exacerbation of health disparities due to modeling biases have raised notable ethical concerns regarding the use of this technology in healthcare. However, the ethical principles for generative AI in healthcare have been understudied. As a result, there are no clear solutions to address ethical concerns, and decision-makers often neglect to consider the significance of ethical principles before implementing generative AI in clinical practice. In an attempt to address these issues, we explore ethical principles from the military perspective and propose the "GREAT PLEA" ethical principles, namely Governability, Reliability, Equity, Accountability, Traceability, Privacy, Lawfulness, Empathy, and Eutonomy, for generative AI in healthcare. Furthermore, we introduce a framework for adopting and expanding these ethical principles in a practical way that has been useful in the military and can be applied to healthcare for generative AI, based on contrasting their ethical concerns and risks. Ultimately, we aim to proactively address the ethical dilemmas and challenges posed by the integration of generative AI into healthcare practice.

SELECTION OF CITATIONS
SEARCH DETAIL
...