Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Reprod Sci ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38907126

ABSTRACT

Pelvic organ prolapse (POP), a downward descent of the vagina and/or uterus through the vaginal canal, is a prevalent condition affecting up to 40% of women. Several risk factors of POP have been identified, including childbirth, connective tissue defects, and chronic intra-abdominal pressure; however, the underlying etiologies of POP development are not fully understood, leading to a high burden on patients and the healthcare systems. The uterosacral ligaments are key support structures of the uterus and upper vagina. Our previous work describes observed histopathological changes in uterosacral ligament (USL) tissue and demonstrates the presence of neutrophils in a subgroup of POP individuals. This presence of neutrophils prompted an examination for the presence of a broader spectrum of inflammatory cell types in the USL. Immunohistochemical staining was performed to identify neutrophils, lymphocytes, macrophages, and mast cells outside of the vasculature. All 4 inflammatory cell types were increased in the POP-HQ system-defined POP-Inflammatory (POP-I) phenotype USL tissue relative to the USL tissues of control or other POP-HQ phenotypes. Focal T-lymphocyte and macrophage co-accumulations were observed in the arterial walls from some patients of the POP-vascular (POP-V) phenotype suggesting previous arterial injury. In addition, 1 control and 2 POP-V subjects' USLs contained arterial wall foamy macrophages, evidence of atherosclerosis. These findings further support a complex etiology for POP and indicate that personalized approaches to preventing and treating the condition may be warranted.

2.
J Surg Res ; 220: 182-196, 2017 12.
Article in English | MEDLINE | ID: mdl-29180181

ABSTRACT

BACKGROUND: Improving treatment for short bowel syndrome requires a better understanding of how intestinal adaptation is affected by factors like mechanoluminal stimulation. We hypothesized that in mice, luminal diversion via an ileostomy would drive adaptive changes similar to those seen in human intestine after diversion while offering the opportunity to study the immediate events after resection that precede intestinal adaptation. MATERIALS AND METHODS: With Institutional Animal Care and Use Committee approval, a distal ileostomy with a long distal Hartman's was created in 9- to 14-week-old C57/B6 mice (n = 8). Control mice only had a midline laparotomy without stoma formation (n = 5). A rim of tissue from the proximal stoma was resected as a historical control for the proximal segment. Postoperatively, mice received a high-protein liquid diet and water ad libitum. On day 3, tissue from both the proximal and distal limbs were collected for histologic and RNA analysis. Morphometric measures, immunofluorescent antigen detection, and RNA expression were compared with Student paired t-tests with a P value < 0.05 considered significant. RESULTS: At 3 d, survival for mice with an ileostomy was 87% and average weight loss was 12.5% of initial weight compared to 6.05% for control mice. Compared to the distal limb, the proximal limb in mice with an ileostomy demonstrated significantly taller villi with deeper and wider crypts. The proximal limb also had decreased expression of intestinal stem cell markers lgr5, bmi1, sox9, and ascl2. Fewer goblet and enteroendocrine cells per hemivillus were also noted in the proximal limb. In control mice, none of these measures were significant between proximal and distal ileum except for villus height. CONCLUSIONS: This new murine ileostomy model allows study of intestinal adaptation without intestinal anastomosis, which can be technically challenging and morbid.


Subject(s)
Adult Stem Cells/physiology , Ileostomy , Intestines/cytology , Models, Animal , Short Bowel Syndrome , Adaptation, Physiological , Animals , Female , Male , Mice
3.
Cell Mol Gastroenterol Hepatol ; 3(3): 367-388.e1, 2017 May.
Article in English | MEDLINE | ID: mdl-28462379

ABSTRACT

BACKGROUND & AIMS: For patients with short-bowel syndrome, intestinal adaptation is required to achieve enteral independence. Although adaptation has been studied extensively in animal models, little is known about this process in human intestine. We hypothesized that analysis of matched specimens with and without luminal flow could identify new potential therapeutic pathways. METHODS: Fifteen paired human ileum samples were collected from children aged 2-20 months during ileostomy-reversal surgery after short-segment intestinal resection and diversion. The segment exposed to enteral feeding was denoted as fed, and the diverted segment was labeled as unfed. Morphometrics and cell differentiation were compared histologically. RNA Sequencing and Gene Ontology Enrichment Analysis identified over-represented and under-represented pathways. Immunofluorescence staining and Western blot evaluated proteins of interest. Paired data were compared with 1-tailed Wilcoxon rank-sum tests with a P value less than .05 considered significant. RESULTS: Unfed ileum contained shorter villi, shallower crypts, and fewer Paneth cells. Genes up-regulated by the absence of mechanoluminal stimulation were involved in digestion, metabolism, and transport. Messenger RNA expression of LGR5 was significantly higher in unfed intestine, accompanied by increased levels of phosphorylated signal transducer and activator of transcription 3 protein, and CCND1 and C-MYC messenger RNA. However, decreased proliferation and fewer LGR5+, OLFM4+, and SOX9+ intestinal stem cells (ISCs) were observed in unfed ileum. CONCLUSIONS: Even with sufficient systemic caloric intake, human ileum responds to the chronic absence of mechanoluminal stimulation by up-regulating brush-border enzymes, transporters, structural genes, and ISC genes LGR5 and ASCL2. These data suggest that unfed intestine is primed to replenish the ISC population upon re-introduction of enteral feeding. Therefore, the elucidation of pathways involved in these processes may provide therapeutic targets for patients with intestinal failure. RNA sequencing data are available at Gene Expression Omnibus series GSE82147.

SELECTION OF CITATIONS
SEARCH DETAIL
...