Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 171
Filter
1.
Sci Total Environ ; 912: 168976, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38036145

ABSTRACT

Woody plants offer a wide range of valuable ecosystem services, but their distribution across socioeconomic gradients in urban landscapes remains poorly understood. Thus, we explored the effect of socioeconomic and legacy factors on plant species richness and phylogenetic diversity, and the motivations for growing and keeping certain species. We sampled a total of 300 households across a socioeconomic gradient in the city of Harare, Zimbabwe, in high-, medium- and low-density areas, representing low to high wealth strata. Trees were mostly grown for ornamental purpose in the rich (low-density) suburbs and utilitarian purposes in the poorer medium to high-density areas. However, trees were also grown with similar proportion for shade across the socioeconomic gradient. Proportion of medicinal and fruit trees increased with household density, while wind break trees were more common in low-density suburbs. Exotic species exhibited greater species richness compared with indigenous species, with both combined and separate assessments of indigenous and exotic species richness revealing a significant positive association with socioeconomic and legacy factors. The composition of species displayed considerable variation along the socioeconomic gradient. Notably, in low-density environments, exotic species maintained elevated phylogenetic diversity in comparison to indigenous species. This distinction was particularly pronounced when analysed independently, revealing a significant positive correlation between exotic species richness and both property value and education level. Our study shows that residents filter specific plant species based on their socioeconomic status and that, relative to low-income households, the rich homeowners have unintentionally incorporated enough exotic species to produce novel phylogenetic diversity of woody plants in their yards. Thus, we confirm the existence of a socioeconomic gradient in terms of species richness, composition, and phylogenetic diversity. However, the imbalance in species richness and phylogenetic diversity across the socioeconomic gradient can be reduced by increased tree planting in open areas, including along streets in medium to high-density areas to improve ecosystem services.


Subject(s)
Ecosystem , Plants , Phylogeny , Zimbabwe , Socioeconomic Factors , Biodiversity
2.
Phys Rev Lett ; 130(17): 173001, 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37172243

ABSTRACT

To test bound-state quantum electrodynamics (BSQED) in the strong-field regime, we have performed high precision x-ray spectroscopy of the 5g-4f and 5f- 4d transitions (BSQED contribution of 2.4 and 5.2 eV, respectively) of muonic neon atoms in the low-pressure gas phase without bound electrons. Muonic atoms have been recently proposed as an alternative to few-electron high-Z ions for BSQED tests by focusing on circular Rydberg states where nuclear contributions are negligibly small. We determined the 5g_{9/2}- 4f_{7/2} transition energy to be 6297.08±0.04(stat)±0.13(syst) eV using superconducting transition-edge sensor microcalorimeters (5.2-5.5 eV FWHM resolution), which agrees well with the most advanced BSQED theoretical prediction of 6297.26 eV.

3.
Phys Rev Lett ; 128(11): 112503, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35363014

ABSTRACT

We have measured the 3d→2p transition x rays of kaonic ^{3}He and ^{4}He atoms using superconducting transition-edge-sensor microcalorimeters with an energy resolution better than 6 eV (FWHM). We determined the energies to be 6224.5±0.4(stat)±0.2(syst) eV and 6463.7±0.3(stat)±0.1(syst) eV, and widths to be 2.5±1.0(stat)±0.4(syst) eV and 1.0±0.6(stat)±0.3(stat) eV, for kaonic ^{3}He and ^{4}He, respectively. These values are nearly 10 times more precise than in previous measurements. Our results exclude the large strong-interaction shifts and widths that are suggested by a coupled-channel approach and agree with calculations based on optical-potential models.

4.
Phys Rev Lett ; 127(15): 151301, 2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34678017

ABSTRACT

We present results from an analysis of all data taken by the BICEP2, Keck Array, and BICEP3 CMB polarization experiments up to and including the 2018 observing season. We add additional Keck Array observations at 220 GHz and BICEP3 observations at 95 GHz to the previous 95/150/220 GHz dataset. The Q/U maps now reach depths of 2.8, 2.8, and 8.8 µK_{CMB} arcmin at 95, 150, and 220 GHz, respectively, over an effective area of ≈600 square degrees at 95 GHz and ≈400 square degrees at 150 and 220 GHz. The 220 GHz maps now achieve a signal-to-noise ratio on polarized dust emission exceeding that of Planck at 353 GHz. We take auto- and cross-spectra between these maps and publicly available WMAP and Planck maps at frequencies from 23 to 353 GHz and evaluate the joint likelihood of the spectra versus a multicomponent model of lensed ΛCDM+r+dust+synchrotron+noise. The foreground model has seven parameters, and no longer requires a prior on the frequency spectral index of the dust emission taken from measurements on other regions of the sky. This model is an adequate description of the data at the current noise levels. The likelihood analysis yields the constraint r_{0.05}<0.036 at 95% confidence. Running maximum likelihood search on simulations we obtain unbiased results and find that σ(r)=0.009. These are the strongest constraints to date on primordial gravitational waves.

5.
BMC Complement Med Ther ; 21(1): 238, 2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34556115

ABSTRACT

BACKGROUND: This study evaluated the in vitro antioxidant activity and comparison of anti-inflammatory and cytotoxic activity of Harpagopytum zeyheri with diclofenac. METHODS: In vitro assays were conducted using water, ethanol, and ethyl acetate extracts of H.zeyheri. The antioxidant activity was evaluated using the 2,2'-diphenyl-1-picrylhydrazy (DPPH) and 2,2'- azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) assays. The anti-inflammatory activity was determined by measuring the inhibition of nitric oxide (NO) on lipopolysaccharide (LPS)-induced RAW 264.7 mouse macrophages as well as cytokine (TNF-α and IL-10) expression on LPS-induced U937 human macrophages. For cytotoxicity, cell viability was determined using the 3-(4, 5-dimethylthiazol- 2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. RESULTS: The ethyl acetate extract had the lowest IC50 values in the DPPH (5.91 µg/ml) and ABTS (20.5 µg/ml) assay compared to other extracts. Furthermore, the ethyl acetate extracts effectively inhibited NO and TNF-α and proved to be comparable to diclofenac at some concentrations. All extracts of H. zeyheri displayed dose-dependent activity and were associated with low levels of human-IL-10 expression compared to quercetin. Furthermore, all extracts displayed low toxicity relative to diclofenac. CONCLUSIONS: These findings show that H. zeyheri has significant antioxidant activity. Additionally, similarities exist in the inflammatory activity of H. zeyheri to diclofenac at some concentrations as well as low toxicity in comparison to diclofenac.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antioxidants/pharmacology , Diclofenac/pharmacology , Harpagophytum , Animals , Cytotoxins , Humans , In Vitro Techniques , Mice , Nitric Oxide/metabolism , Plant Extracts , RAW 264.7 Cells , U937 Cells , Zimbabwe
6.
Metrologia ; 58(1)2021 Feb.
Article in English | MEDLINE | ID: mdl-34354301

ABSTRACT

We use an array of transition-edge sensors, cryogenic microcalorimeters with 4 eV energy resolution, to measure L x-ray emission-line profiles of four elements of the lanthanide series: praseodymium, neodymium, terbium, and holmium. The spectrometer also surveys numerous x-ray standards in order to establish an absolute-energy calibration traceable to the international system of units for the energy range 4 keV to 10 keV. The new results include emission line profiles for 97 lines, each expressed as a sum of one or more Voigt functions; improved absolute energy uncertainty on 71 of these lines relative to existing reference data; a median uncertainty on the peak energy of 0.24 eV, four to ten times better than the median of prior work; and six lines that lack any measured values in existing reference tables. The 97 lines comprise nearly all of the most intense L lines from these elements under broad-band x-ray excitation. The work improves on previous measurements made with a similar cryogenic spectrometer by the use of sensors with better linearity in the absorbed energy and a gold x-ray absorbing layer that has a Gaussian energy-response function. It also employs a novel sample holder that enables rapid switching between science targets and calibration targets with excellent gain balancing. Most of the results for peak energy values shown here should be considered as replacements for the currently tabulated standard reference values, while the line shapes given here represent a significant expansion of the scope of available reference data.

7.
Phys Rev Lett ; 127(5): 053001, 2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34397250

ABSTRACT

We observed electronic K x rays emitted from muonic iron atoms using superconducting transition-edge sensor microcalorimeters. The energy resolution of 5.2 eV in FWHM allowed us to observe the asymmetric broad profile of the electronic characteristic Kα and Kß x rays together with the hypersatellite K^{h}α x rays around 6 keV. This signature reflects the time-dependent screening of the nuclear charge by the negative muon and the L-shell electrons, accompanied by electron side feeding. Assisted by a simulation, these data clearly reveal the electronic K- and L-shell hole production and their temporal evolution on the 10-20 fs scale during the muon cascade process.

8.
J Low Temp Phys ; 199(3-4)2020.
Article in English | MEDLINE | ID: mdl-33487736

ABSTRACT

We describe the design and measurement of feedhorn-coupled, transition-edge sensor (TES) polarimeters with two passbands centered at 220 GHz and 280 GHz, intended for observations of the cosmic microwave background. Each pixel couples polarized light in two linear polarizations by use of a planar orthomode transducer and senses power via four TES bolometers, one for each band in each linear polarization. Previous designs of this detector architecture incorporated passbands from 27 to 220 GHz; we now demonstrate this technology at frequencies up to 315 GHz. Observational passbands are defined with an on-chip diplexer, and Fourier-transform-spectrometer measurements are in excellent agreement with simulations. We find coupling from feedhorn to TES bolometer using a cryogenic, temperature-controlled thermal source. We determine the optical efficiency of our device is η = 77% ± 6% (75% ± 5%) for 220 (280) GHz, relative to the designed passband shapes. Lastly, we compare two power-termination schemes commonly used in wide-bandwidth millimeter-wave polarimeters and find equal performance in terms of optical efficiency and passband shape.

9.
Rev Sci Instrum ; 90(9): 095104, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31575233

ABSTRACT

The Primordial Inflation Polarization Explorer (PIPER) is a balloon-borne telescope mission to search for inflationary gravitational waves from the early universe. PIPER employs two 32 × 40 arrays of superconducting transition-edge sensors, which operate at 100 mK. An open bucket Dewar of liquid helium maintains the receiver and telescope optics at 1.7 K. We describe the thermal design of the receiver and sub-Kelvin cooling with a continuous adiabatic demagnetization refrigerator (CADR). The CADR operates between 70 and 130 mK and provides ≈10 µW cooling power at 100 mK, nearly five times the loading of the two detector assemblies. We describe electronics and software to robustly control the CADR, overall CADR performance in flightlike integrated receiver testing, and practical considerations for implementation in the balloon float environment.

10.
IEEE Trans Appl Supercond ; 29(5)2019 Mar 18.
Article in English | MEDLINE | ID: mdl-31360051

ABSTRACT

Readout of a large, spacecraft-based array of superconducting transition-edge sensors (TESs) requires careful management of the layout area and power dissipation of the cryogenic-circuit components. We present three optimizations of our time- (TDM) and code-division-multiplexing (CDM) systems for the X-ray Integral Field Unit (X-IFU), a several-thousand-pixel-TES array for the planned Athena-satellite mission. The first optimization is a new readout scheme that is a hybrid of CDM and TDM. This C/TDM architecture balances CDM's noise advantage with TDM's layout compactness. The second is a redesign of a component: the shunt resistor that provides a dc-voltage bias to the TESs. A new layout and a thicker Pd-Au resistive layer combine to reduce this resistor's area by more than a factor of 5. Third, we have studied the power dissipated by the first-stage SQUIDs (superconducting quantum-interference devices) and the readout noise versus the critical current of the first-stage SqUIDs. As a result, the X-IFU TDM and C/TDM SQUIDs will have a specified junction critical current of 5 µA. Based on these design optimizations and TDM experiments described by Durkin, et al. (these proceedings), TDM meets all requirements to be X-IFU's backup-readout option. Hybrid C/TDM is another viable option that could save spacecraft resources.

11.
Article in English | MEDLINE | ID: mdl-31160861

ABSTRACT

Time-division multiplexing (TDM) is the backup readout technology for the X-ray Integral Field Unit (X-IFU), a 3,168-pixel X-ray transition-edge sensor (TES) array that will provide imaging spectroscopy for ESA's Athena satellite mission. X-0IFU design studies are considering readout with a multiplexing factor of up to 40. We present data showing 40-row TDM readout (32 TES rows + 8 repeats of the last row) of TESs that are of the same type as those being planned for X-IFU, using measurement and analysis parameters within the ranges specified for X-IFU. Singlecolumn TDM measurements have best-fit energy resolution of (1.91 ± 0.01) eV for the Al Kα complex (1.5 keV), (2.10 ± 0.02) eV for Ti Kα (4.5 keV), (2.23 ± 0.02) eV for Mn Kα (5.9 keV), (2.40 ± 0.02) eV for Co Kα (6.9 keV), and (3.44 ± 0.04) eV for Br Kα (11.9 keV). Three-column measurements have best-fit resolution of (2.03 ± 0.01) eV for Ti Kα and (2.40 ± 0.01) eV for Co Kα. The degradation due to the multiplexed readout ranges from 0.1 eV at the lower end of the energy range to 0.5 eV at the higher end. The demonstrated performance meets X-IFU's energy-resolution and energy-range requirements. True 40-row TDM readout, without repeated rows, of kilopixel scale arrays of X-IFU-like TESs is now under development.

12.
R Soc Open Sci ; 6(12): 191419, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31903212

ABSTRACT

This paper evaluates the performance of three-dimensionally (3D) printed spiral phase plates (SPPs) for enabling an orbital angular momentum (OAM) multiplexed radio system. The design and realization of the SPPs by means of additive manufacturing exploiting a high-permittivity material is described. Modes 1 and 2 SPPs are then evaluated at 15 GHz in terms of 3D complex radiation pattern, mode purity and beam collimation by means of a 3D printed dielectric lens. The results with the lens yield a crosstalk of -8 dB for between modes 1 and -1, and -11.4 dB for between modes 2 and -2. We suggest a mode multiplexer architecture that is expected to further reduce the crosstalk for each mode. An additional loss of 4.2 dB is incurred with the SPPs inserted into the communication link, which is undesirable for obtaining reliable LTE-based communications. Thus, we suggest: using lower loss materials, seeking ways to reduce material interface reflections or alternative ways of OAM multiplexing to realize a viable OAM multiplexed radio system.

13.
Rev Sci Instrum ; 90(12): 123107, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31893849

ABSTRACT

We report on the design, commissioning, and initial measurements of a Transition-Edge Sensor (TES) x-ray spectrometer for the Electron Beam Ion Trap (EBIT) at the National Institute of Standards and Technology (NIST). Over the past few decades, the NIST EBIT has produced numerous studies of highly charged ions in diverse fields such as atomic physics, plasma spectroscopy, and laboratory astrophysics. The newly commissioned NIST EBIT TES Spectrometer (NETS) improves the measurement capabilities of the EBIT through a combination of high x-ray collection efficiency and resolving power. NETS utilizes 192 individual TES x-ray microcalorimeters (166/192 yield) to improve upon the collection area by a factor of ∼30 over the 4-pixel neutron transmutation doped germanium-based microcalorimeter spectrometer previously used at the NIST EBIT. The NETS microcalorimeters are optimized for the x-ray energies from roughly 500 eV to 8000 eV and achieve an energy resolution of 3.7 eV-5.0 eV over this range, a more modest (<2×) improvement over the previous microcalorimeters. Beyond this energy range, NETS can operate with various trade-offs, the most significant of which are reduced efficiency at lower energies and being limited to a subset of the pixels at higher energies. As an initial demonstration of the capabilities of NETS, we measured transitions in He-like and H-like O, Ne, and Ar as well as Ni-like W. We detail the energy calibration and data analysis techniques used to transform detector counts into x-ray spectra, a process that will be the basis for analyzing future data.

14.
Toxicol In Vitro ; 54: 58-66, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30243732

ABSTRACT

With the emerging concern over the potential toxicity associated with carbon nanotube inhalation exposure, several in vitro methods have been developed to evaluate cellular responses. Since the major concern for adverse effects by carbon nanotubes is inhalation, various lung cell culture models have been established for toxicity testing, thus creating a wide variation of methodology. Limited studies have conducted side-by-side comparisons of common methods used for carbon nanotube hazard testing. The aim of this work was to use proteomics to evaluate global cellular response, including pro-inflammatory and pro-fibrotic mediators, of a 3D lung model composed of macrophages, epithelial cells, and fibroblasts which mimics the human alveolar epithelial tissue barrier. The cells were exposed to Mitsui 7 (M-7) multi-walled carbon nanotubes (MWCNT) under submerged and air-liquid interface (ALI) conditions and discovery proteomics identified 3500 proteins. The M-7 ALI exposure compared to control was found to increase expression in proteins related to oxidative stress that were not found to be enriched in submerged exposure. Comparison of MWCNT exposure methods, M-7 ALI exposure versus M-7 submerged exposure, yielded protein enrichment in pathways known to be associated with carbon nanotube exposure stress response, such as acute phase response signaling and NRF2-mediated oxidative stress response. This study demonstrates a comparison of commonly deployed carbon nanotube exposure methods. These data should be considered by the nanotoxicology community when interpreting or cross comparing in vitro exposure results.


Subject(s)
Epithelial Cells/drug effects , Fibroblasts/drug effects , Lung/cytology , Macrophages/drug effects , Nanotubes, Carbon/toxicity , Cell Line , Coculture Techniques , Epithelial Cells/metabolism , Fibroblasts/metabolism , Humans , Macrophages/metabolism , Proteomics , Toxicity Tests
15.
Phys Rev Lett ; 121(22): 221301, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-30547645

ABSTRACT

We present results from an analysis of all data taken by the bicep2/Keck CMB polarization experiments up to and including the 2015 observing season. This includes the first Keck Array observations at 220 GHz and additional observations at 95 and 150 GHz. The Q and U maps reach depths of 5.2, 2.9, and 26 µK_{CMB} arcmin at 95, 150, and 220 GHz, respectively, over an effective area of ≈400 square degrees. The 220 GHz maps achieve a signal to noise on polarized dust emission approximately equal to that of Planck at 353 GHz. We take auto and cross spectra between these maps and publicly available WMAP and Planck maps at frequencies from 23 to 353 GHz. We evaluate the joint likelihood of the spectra versus a multicomponent model of lensed-ΛCDM+r+dust+synchrotron+noise. The foreground model has seven parameters, and we impose priors on some of these using external information from Planck and WMAP derived from larger regions of sky. The model is shown to be an adequate description of the data at the current noise levels. The likelihood analysis yields the constraint r_{0.05}<0.07 at 95% confidence, which tightens to r_{0.05}<0.06 in conjunction with Planck temperature measurements and other data. The lensing signal is detected at 8.8σ significance. Running a maximum likelihood search on simulations we obtain unbiased results and find that σ(r)=0.020. These are the strongest constraints to date on primordial gravitational waves.

16.
Phys Rev Lett ; 120(15): 151301, 2018 Apr 13.
Article in English | MEDLINE | ID: mdl-29756850

ABSTRACT

This Letter reports the results from a haloscope search for dark matter axions with masses between 2.66 and 2.81 µeV. The search excludes the range of axion-photon couplings predicted by plausible models of the invisible axion. This unprecedented sensitivity is achieved by operating a large-volume haloscope at subkelvin temperatures, thereby reducing thermal noise as well as the excess noise from the ultralow-noise superconducting quantum interference device amplifier used for the signal power readout. Ongoing searches will provide nearly definitive tests of the invisible axion model over a wide range of axion masses.

17.
Physiotherapy ; 104(1): 80-90, 2018 03.
Article in English | MEDLINE | ID: mdl-28917522

ABSTRACT

OBJECTIVES: To determine whether physical activity measured using the Physical Activity Scale for the Elderly (PASE), changes during the initial 24 months post-total hip (THR) or knee replacement (TKR), and how this compares to a matched non-arthroplasty cohort. DESIGN: Case-controlled study analysis of a prospectively collected dataset. SETTING: USA community-based. PARTICIPANTS: 116 people post-THR, 105 people post-TKR compared to 663 people who had not undergone THR or TKR, or had hip or knee osteoarthritis. Cohorts were age-, gender- and BMI-matched. MAIN OUTCOME MEASURES: Physical activity assessed using the 12-item PASE at 12 and 24 months post operatively. RESULTS: There was no significant difference in total PASE score between pre-operative to 12 months (mean: 136 vs 135 points; p=0.860) or 24 months following THR (mean: 136 vs 132 points; p=0.950). Whilst there was no significant difference in total PASE score from pre-operative to 12 months post-TKR (126 vs 121 points; p=0.930), by 24 months people following TKR reported significantly greater physical activity (126 vs 142 points; p=0.040). There was no statistically significant difference in physical activity between the normative matched and THR (p≥0.140) or TKR (p≥0.060) cohorts at 12 or 24 months post joint replacement. CONCLUSIONS: Physical activity is not appreciably different to pre-operative levels at 12 or 24 months post-THR, but was greater at 24 months following TKR. Health promotion strategies are needed to encourage greater physical activity participation following joint replacement, and particularly targeting those who undergo THR.


Subject(s)
Arthroplasty, Replacement, Hip/statistics & numerical data , Arthroplasty, Replacement, Knee/statistics & numerical data , Exercise , Aged , Case-Control Studies , Comorbidity , Female , Humans , Leisure Activities , Male , Middle Aged , Osteoarthritis, Hip/surgery , Osteoarthritis, Knee/surgery , Prospective Studies , Racial Groups , Time Factors , United States
18.
J Low Temp Phys ; 193(3-4)2018.
Article in English | MEDLINE | ID: mdl-34815585

ABSTRACT

Microwave Kinetic Inductance Detectors (MKIDs) provide a compelling path forward to the large-format polarimeter, imaging, and spectrometer arrays needed for next-generation experiments in millimeter-wave cosmology and astronomy. We describe the development of feedhorn-coupled MKID detectors for the TolTEC millimeter-wave imaging polarimeter being constructed for the 50-meter Large Millimeter Telescope (LMT). Observations with TolTEC are planned to begin in early 2019. TolTEC will comprise ∼7,000 polarization sensitive MKIDs and will represent the first MKID arrays fabricated and deployed on monolithic 150 mm diameter silicon wafers - a critical step towards future large-scale experiments with over 105 detectors. TolTEC will operate in observational bands at 1.1, 1.4, and 2.0 mm and will use dichroic filters to define a physically independent focal plane for each passband, thus allowing the polarimeters to use simple, direct-absorption inductive structures that are impedance matched to incident radiation. This work is part of a larger program at NIST-Boulder to develop MKID-based detector technologies for use over a wide range of photon energies spanning millimeter-waves to X-rays. We present the detailed pixel layout and describe the methods, tools, and flexible design parameters that allow this solution to be optimized for use anywhere in the millimeter and sub-millimeter bands. We also present measurements of prototype devices operating in the 1.1 mm band and compare the observed optical performance to that predicted from models and simulations.

19.
Rev Sci Instrum ; 88(5): 053108, 2017 May.
Article in English | MEDLINE | ID: mdl-28571411

ABSTRACT

We describe a series of microcalorimeter X-ray spectrometers designed for a broad suite of measurement applications. The chief advantage of this type of spectrometer is that it can be orders of magnitude more efficient at collecting X-rays than more traditional high-resolution spectrometers that rely on wavelength-dispersive techniques. This advantage is most useful in applications that are traditionally photon-starved and/or involve radiation-sensitive samples. Each energy-dispersive spectrometer is built around an array of several hundred transition-edge sensors (TESs). TESs are superconducting thin films that are biased into their superconducting-to-normal-metal transitions. The spectrometers share a common readout architecture and many design elements, such as a compact, 65 mK detector package, 8-column time-division-multiplexed superconducting quantum-interference device readout, and a liquid-cryogen-free cryogenic system that is a two-stage adiabatic-demagnetization refrigerator backed by a pulse-tube cryocooler. We have adapted this flexible architecture to mate to a variety of sample chambers and measurement systems that encompass a range of observing geometries. There are two different types of TES pixels employed. The first, designed for X-ray energies below 10 keV, has a best demonstrated energy resolution of 2.1 eV (full-width-at-half-maximum or FWHM) at 5.9 keV. The second, designed for X-ray energies below 2 keV, has a best demonstrated resolution of 1.0 eV (FWHM) at 500 eV. Our team has now deployed seven of these X-ray spectrometers to a variety of light sources, accelerator facilities, and laboratory-scale experiments; these seven spectrometers have already performed measurements related to their applications. Another five of these spectrometers will come online in the near future. We have applied our TES spectrometers to the following measurement applications: synchrotron-based absorption and emission spectroscopy and energy-resolved scattering; accelerator-based spectroscopy of hadronic atoms and particle-induced-emission spectroscopy; laboratory-based time-resolved absorption and emission spectroscopy with a tabletop, broadband source; and laboratory-based metrology of X-ray-emission lines. Here, we discuss the design, construction, and operation of our TES spectrometers and show first-light measurements from the various systems. Finally, because X-ray-TES technology continues to mature, we discuss improvements to array size, energy resolution, and counting speed that we anticipate in our next generation of TES-X-ray spectrometers and beyond.

20.
Spinal Cord ; 55(8): 743-752, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28290469

ABSTRACT

STUDY DESIGN: Longitudinal cohort design. OBJECTIVES: First, to explore the longitudinal outcomes for people who received early intervention vocational rehabilitation (EIVR); second, to examine the nature and extent of relationships between contextual factors and employment outcomes over time. SETTING: Both inpatient and community-based clients of a Spinal Community Integration Service (SCIS). METHODS: People of workforce age undergoing inpatient rehabilitation for traumatic spinal cord injury were invited to participate in EIVR as part of SCIS. Data were collected at the following three time points: discharge and at 1 year and 2+ years post discharge. Measures included the spinal cord independence measure, hospital anxiety and depression scale, impact on participation and autonomy scale, numerical pain-rating scale and personal wellbeing index. A range of chi square, correlation and regression tests were undertaken to look for relationships between employment outcomes and demographic, emotional and physical characteristics. RESULTS: Ninety-seven participants were recruited and 60 were available at the final time point where 33% (95% confidence interval (CI): 24-42%) had achieved an employment outcome. Greater social participation was strongly correlated with wellbeing (ρ=0.692), and reduced anxiety (ρ=-0.522), depression (ρ=-0.643) and pain (ρ=-0.427) at the final time point. In a generalised linear mixed effect model, education status, relationship status and subjective wellbeing increased significantly the odds of being employed at the final time point. Tertiary education prior to injury was associated with eight times increased odds of being in employment at the final time point; being in a relationship at the time of injury was associated with increased odds of being in employment of more than 3.5; subjective wellbeing, while being the least powerful predictor was still associated with increased odds (1.8 times) of being employed at the final time point. CONCLUSIONS: EIVR shows promise in delivering similar return-to-work rates as those traditionally reported, but sooner. The dynamics around relationships, subjective wellbeing, social participation and employment outcomes require further exploration.


Subject(s)
Employment , Rehabilitation, Vocational , Spinal Cord Injuries/rehabilitation , Adolescent , Adult , Aged , Anxiety , Depression , Educational Status , Female , Humans , Longitudinal Studies , Male , Middle Aged , Pain , Rehabilitation, Vocational/methods , Spinal Cord Injuries/psychology , Time-to-Treatment , Treatment Outcome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...