Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Oecologia ; 201(1): 183-197, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36520221

ABSTRACT

The effects of lake browning on trophic functioning of planktonic food webs are not fully understood. We studied the effects of browning on the response patterns of polyunsaturated fatty acids and n-3/n-6 ratio in seston and compared them between boreal and temperate lakes. We also compared the regional differences and the effects of lake browning on the reliance of zooplankton on heterotrophic microbial pathways and the mass fractions of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in zooplankton. Lake browning was associated with increasing phytoplankton biomass and concentrations of EPA and DHA in both temperate and boreal lakes, but the seston n-3/n-6 ratio was lower in temperate than boreal lakes, most likely due the differences in phytoplankton community composition. The browning-induced increase in phytoplankton biomass was associated with increased reliance of zooplankton on a heterotrophic microbial pathway for both cladocerans and copepods in boreal and temperate lakes. This increased reliance on the heterotrophic microbial diet was correlated with a decrease in the EPA and DHA mass fractions in temperate copepods and a decrease in the n-3/n-6 ratio in boreal cladocerans and copepods. Our results indicate that although phytoplankton responses to lake browning were similar across regions, this did not directly cascade to the next trophic level, where zooplankton responses were highly taxa- and region-specific. These results indicate that lake browning should be considered as an overarching moderator that is linked to, e.g., nutrient increases, which have more immediate consequences on trophic interactions at the phytoplankton-zooplankton interface.


Subject(s)
Fatty Acids , Plankton , Animals , Fatty Acids/metabolism , Lakes , Food Chain , Phytoplankton/metabolism , Zooplankton , Biomass
2.
Sci Total Environ ; 843: 157001, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35772541

ABSTRACT

Climate change and eutrophication are among the main stressors of shallow freshwater ecosystems, and their effects on phytoplankton community structure and primary production have been studied extensively. However, their combined effects on the algal production of polyunsaturated fatty acids (PUFA), specifically, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are currently unresolved. Moreover, the proximate reasons for changes in phytoplankton EPA and DHA concentrations are unclear, i.e., the relative importance of ecological (changes in the community composition) vs. ecophysiological (within taxa changes in EPA and DHA levels) factors. We investigated the responses of phytoplankton EPA and DHA concentrations to warming (IPCC climate scenario) and nutrient additions in mesocosms which had been run continuously at varying temperature and nutrient levels for 15 years prior to this study. Nutrient treatment had a significant effect on phytoplankton EPA and DHA concentrations and about 59 % of the variation in EPA and DHA concentrations could be explained by changes in the phytoplankton community structure. Increased biomass of diatoms corresponded with high EPA and DHA concentrations, while cyanobacteria/chlorophyte dominated mesocosm had low EPA and DHA concentrations. Warming had only a marginal effect on the EPA and DHA concentrations in these mesocosms. However, a significant interaction was observed with warming and N:P ratio. Our findings indicate that direct nutrient/temperature effects on algal physiology and PUFA metabolism were negligible and the changes in EPA and DHA concentrations were mostly related to the phytoplankton community structure and biomass. These results also imply that in shallow temperate lakes eutrophication, leading to increased dominance of cyanobacteria, will probably be a greater threat to phytoplankton EPA and DHA production than warming. EPA and DHA are nutritionally important for upper trophic level consumers and decreased production may impair secondary production.


Subject(s)
Cyanobacteria , Phytoplankton , Docosahexaenoic Acids/metabolism , Ecosystem , Eicosapentaenoic Acid/metabolism , Eutrophication , Fatty Acids, Unsaturated , Lakes , Phytoplankton/physiology
3.
Environ Res ; 192: 110304, 2021 01.
Article in English | MEDLINE | ID: mdl-33038362

ABSTRACT

The effects of multiple stressors are difficult to separate in field studies, and their interactions may be hard to predict if studied in isolation. We studied the effects of decreasing food quality (increase in cyanobacteria from 5 to 95% simulating eutrophication), temperature increase (by 3 °C), and microplastic exposure (1% of the diet) on survival, size, reproduction, and fatty acid composition of the model freshwater cladoceran Daphnia magna. We found that food quality was the major driver of Daphnia responses. When the amount of cyanobacteria increased from 5 to 95% of the diet, there was a drastic decrease in Daphnia survival (from 81 ± 15% to 24 ± 21%), juvenile size (from 1.8 ± 0.2 mm to 1.0 ± 0.1 mm), adult size (from 2.7 ± 0.1 mm to 1.1 ± 0.1 mm), and reproduction (from 13 ± 5 neonates per surviving adult to 0), but the decrease was not always linear. This was most likely due to lower availability of lipids, eicosapentaenoic acid (EPA), and sterols from the diet. Microplastic exposure did not affect Daphnia survival, size, or reproduction. Food quality had an interactive effect with temperature on fatty acid content of Daphnia. Total fatty acid content of Daphnia was almost 2-fold higher at 20 °C than at 23 °C when fed 50% cyanobacteria. This may have implications for higher trophic level consumers, such as fish, that depend on zooplankton for energy and essential lipids. Our findings suggest that as proportions of cyanobacteria increase, in tandem with water temperatures due to climate change, fish may encounter fewer and smaller Daphnia with lower lipid and EPA content.


Subject(s)
Daphnia , Microplastics , Animals , Eutrophication , Humans , Infant, Newborn , Plastics , Temperature
4.
Front Plant Sci ; 7: 212, 2016.
Article in English | MEDLINE | ID: mdl-26973664

ABSTRACT

The composition and abundance of phytoplankton is an important factor defining ecological status of marine and freshwater ecosystems. Chemotaxonomic markers (e.g., pigments and fatty acids) are needed for monitoring changes in a phytoplankton community and to know the nutritional quality of seston for herbivorous zooplankton. Here we investigated the suitability of sterols along with fatty acids as chemotaxonomic markers using multivariate statistics, by analyzing the sterol and fatty acid composition of 10 different phytoplankton classes including altogether 37 strains isolated from freshwater lakes. We were able to detect a total of 47 fatty acids and 29 sterols in our phytoplankton samples, which both differed statistically significantly between phytoplankton classes. Due to the high variation of fatty acid composition among Cyanophyceae, taxonomical differentiation increased when Cyanophyceae were excluded from statistical analysis. Sterol composition was more heterogeneous within class than fatty acids and did not improve separation of phytoplankton classes when used alongside fatty acids. However, we conclude that sterols can provide additional information on the abundance of specific genera within a class which can be generated by using fatty acids. For example, whereas high C16 ω-3 PUFA (polyunsaturated fatty acid) indicates the presence of Chlorophyceae, a simultaneous high amount of ergosterol could specify the presence of Chlamydomonas spp. (Chlorophyceae). Additionally, we found specific 4α-methyl sterols for distinct Dinophyceae genera, suggesting that 4α-methyl sterols can potentially separate freshwater dinoflagellates from each other.

5.
Sci Total Environ ; 536: 858-865, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26282609

ABSTRACT

Lake size influences various hydrological parameters, such as water retention time, circulation patterns and thermal stratification that can consequently affect the plankton community composition, benthic-pelagic coupling and the function of aquatic food webs. Although the socio-economical (particularly commercial fisheries) and ecological importance of large lakes has been widely acknowledged, little is known about the availability and trophic transfer of polyunsaturated fatty (PUFA) in large lakes. The objective of this study was to investigate trophic trajectories of PUFA in the pelagic food web (seston, zooplankton, and planktivorous fish) of six large boreal lakes in the Finnish Lake District. Docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and α-linolenic acid (ALA) were the most abundant PUFA in pelagic organisms, particularly in the zooplanktivorous fish. Our results show that PUFA from the n-3 family (PUFAn-3), often associated with marine food webs, are also abundant in large lakes. The proportion of DHA increased from ~4±3% in seston to ~32±6% in vendace (Coregonus albula) and smelt (Osmerus eperlanus), whereas ALA showed the opposite trophic transfer pattern with the highest values observed in seston (~11±2%) and the lowest in the opossum shrimp (Mysis relicta) and fish (~2±1%). The dominance of diatoms and cryptophytes at the base of the food web in the study lakes accounted for the high amount of PUFAn-3 in the planktonic consumers. Furthermore, the abundance of copepods in the large lakes explains the effective transfer of DHA to planktivorous fish. The plankton community composition in these lakes supports a fishery resource (vendace) that is very high nutritional quality (in terms of EPA and DHA contents) to humans.


Subject(s)
Fatty Acids, Unsaturated/metabolism , Fishes/metabolism , Food Chain , Phytoplankton/metabolism , Animals , Lakes
6.
PLoS One ; 10(7): e0133974, 2015.
Article in English | MEDLINE | ID: mdl-26208114

ABSTRACT

Stable isotope mixing models in aquatic ecology require δ13C values for food web end members such as phytoplankton and bacteria, however it is rarely possible to measure these directly. Hence there is a critical need for improved methods for estimating the δ13C ratios of phytoplankton, bacteria and terrestrial detritus from within mixed seston. We determined the δ13C values of lipids, phospholipids and biomarker fatty acids and used these to calculate isotopic differences compared to the whole-cell δ13C values for eight phytoplankton classes, five bacterial taxa, and three types of terrestrial organic matter (two trees and one grass). The lipid content was higher amongst the phytoplankton (9.5±4.0%) than bacteria (7.3±0.8%) or terrestrial matter (3.9±1.7%). Our measurements revealed that the δ13C values of lipids followed phylogenetic classification among phytoplankton (78.2% of variance was explained by class), bacteria and terrestrial matter, and there was a strong correlation between the δ13C values of total lipids, phospholipids and individual fatty acids. Amongst the phytoplankton, the isotopic difference between biomarker fatty acids and bulk biomass averaged -10.7±1.1‰ for Chlorophyceae and Cyanophyceae, and -6.1±1.7‰ for Cryptophyceae, Chrysophyceae and Diatomophyceae. For heterotrophic bacteria and for type I and type II methane-oxidizing bacteria our results showed a -1.3±1.3‰, -8.0±4.4‰, and -3.4±1.4‰ δ13C difference, respectively, between biomarker fatty acids and bulk biomass. For terrestrial matter the isotopic difference averaged -6.6±1.2‰. Based on these results, the δ13C values of total lipids and biomarker fatty acids can be used to determine the δ13C values of bulk phytoplankton, bacteria or terrestrial matter with ± 1.4‰ uncertainty (i.e., the pooled SD of the isotopic difference for all samples). We conclude that when compound-specific stable isotope analyses become more widely available, the determination of δ13C values for selected biomarker fatty acids coupled with established isotopic differences, offers a promising way to determine taxa-specific bulk δ13C values for the phytoplankton, bacteria, and terrestrial detritus embedded within mixed seston.


Subject(s)
Bacteria/chemistry , Carbon Isotopes/chemistry , Fatty Acids/chemistry , Lipids/chemistry , Phytoplankton/chemistry , Bacteria/metabolism , Biomarkers , Biomass , Metabolomics/methods , Phytoplankton/metabolism
7.
Lipids ; 49(9): 919-32, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25092258

ABSTRACT

We studied the copepod Limnocalanus macrurus for seasonal variation in the composition of fatty acids, wax esters and sterols in large boreal lakes, where it occurs as a glacial-relict. Vast wax ester reserves of Limnocalanus were accumulated in a period of only two months, and comprised mono- and polyunsaturated fatty acids (PUFA) and saturated fatty alcohols. In winter, the mobilization of wax esters was selective, and the proportion of long-chain polyunsaturated wax esters declined first. PUFA accounted for >50% of all fatty acids throughout the year reaching up to ca. 65% during late summer and fall. Long-chain PUFA 20:5n-3 and 22:6n-3 together comprised 17-40% of all fatty acids. The rarely reported C24 and C26 very-long-chain PUFA (VLC-PUFA) comprised 6.2 ± 3.4 % of all fatty acids in August and 2.1 ± 1.7% in September. The VLC-PUFA are presumably synthesized by Limnocalanus from shorter chain-length precursors because they were not found in the potential food sources. We hypothesize that these VLC-PUFA help Limnocalanus to maximize lipid reserves when food is abundant. Sterol content of Limnocalanus, consisting ca. 90% of cholesterol, did not show great seasonal variation. As a lipid-rich copepod with high abundance of PUFA, Limnocalanus is excellent quality food for fish. The VLC-PUFA were also detected in planktivorous fish, suggesting that these compounds can be used as a trophic marker indicating feeding on Limnocalanus.


Subject(s)
Copepoda/chemistry , Copepoda/metabolism , Fatty Acids, Unsaturated/analysis , Lipids/analysis , Lipids/chemistry , Animals , Chromatography, Gas , Ecosystem , Esters/analysis , Fatty Acids/analysis , Fatty Acids/chemistry , Finland , Lakes , Seasons , Sterols/analysis , Zooplankton
8.
Ecology ; 95(2): 563-76, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24669748

ABSTRACT

There is considerable interest in the pathways by which carbon and growth-limiting elemental and biochemical nutrients are supplied to upper trophic levels. Fatty acids and sterols are among the most important molecules transferred across the plant-animal interface of food webs. In lake ecosystems, in addition to phytoplankton, bacteria and terrestrial organic matter are potential trophic resources for zooplankton, especially in those receiving high terrestrial organic matter inputs. We therefore tested carbon, nitrogen, and fatty acid assimilation by the crustacean Daphnia magna when consuming these resources. We fed Daphnia with monospecific diets of high-quality (Cryptomonas marssonii) and intermediate-quality (Chlamydomonas sp. and Scenedesmus gracilis) phytoplankton species, two heterotrophic bacterial strains, and particles from the globally dispersed riparian grass, Phragmites australis, representing terrestrial particulate organic carbon (t-POC). We also fed Daphnia with various mixed diets, and compared Daphnia fatty acid, carbon, and nitrogen assimilation across treatments. Our results suggest that bacteria were nutritionally inadequate diets because they lacked sterols and polyunsaturated omega-3 and omega-6 (omega-3 and omega-6) fatty acids (PUFAs). However, Daphnia were able to effectively use carbon and nitrogen from Actinobacteria, if their basal needs for essential fatty acids and sterols were met by phytoplankton. In contrast to bacteria, t-POC contained sterols and omega-6 and omega-3 fatty acids, but only at 22%, 1.4%, and 0.2% of phytoplankton levels, respectively, which indicated that t-POC food quality was especially restricted with regard to omega-3 PUFAs. Our results also showed higher assimilation of carbon than fatty acids from t-POC and bacteria into Daphnia, based on stable-isotope and fatty acids analysis, respectively. A relatively high (>20%) assimilation of carbon and fatty acids from t-POC was observed only when the proportion of t-POC was >60%, but due to low PUFA to carbon ratio, these conditions yielded poor Daphnia growth. Because of lower assimilation for carbon, nitrogen, and fatty acids from t-POC relative to diets of bacteria mixed with phytoplankton, we conclude that the microbial food web, supported by phytoplankton, and not direct t-POC consumption, may support zooplankton production. Our results suggest that terrestrial particulate organic carbon poorly supports upper trophic levels of the lakes.


Subject(s)
Bacteria/chemistry , Carbon/metabolism , Cryptophyta/chemistry , Daphnia/metabolism , Energy Metabolism/physiology , Fatty Acids/metabolism , Animals , Carbon/chemistry , Cryptophyta/metabolism , Fatty Acids/chemistry , Nitrogen , Phosphorus , Phytoplankton , Sterols
9.
PLoS One ; 7(6): e38552, 2012.
Article in English | MEDLINE | ID: mdl-22715392

ABSTRACT

Nutrient limitation and resource competition in bacterial and phytoplankton communities may appear different when considering different levels of taxonomic resolution. Nutrient amendment experiments conducted in a boreal lake on three occasions during one open water season revealed complex responses in overall bacterioplankton and phytoplankton abundance and biovolume. In general, bacteria were dominant in spring, while phytoplankton was clearly the predominant group in autumn. Seasonal differences in the community composition of bacteria and phytoplankton were mainly related to changes in observed taxa, while the differences across nutrient treatments within an experiment were due to changes in relative contributions of certain higher- and lower-level phylogenetic groups. Of the main bacterioplankton phyla, only Actinobacteria had a treatment response that was visible even at the phylum level throughout the season. With increasing resolution (from 75 to 99% sequence similarity) major responses to nutrient amendments appeared using 454 pyrosequencing data of 16S rRNA amplicons. This further revealed that OTUs (defined by 97% sequence similarity) annotated to the same highly resolved freshwater groups appeared to occur during different seasons and were showing treatment-dependent differentiation, indicating that OTUs within these groups were not ecologically coherent. Similarly, phytoplankton species from the same genera responded differently to nutrient amendments even though biovolumes of the majority of taxa increased when both nitrogen and phosphorus were added simultaneously. The bacterioplankton and phytoplankton community compositions showed concurrent trajectories that could be seen in synchronous succession patterns over the season. Overall, our data revealed that the response of both communities to nutrient changes was highly dependent on season and that contradictory results may be obtained when using different taxonomic resolutions.


Subject(s)
Actinobacteria , Lakes/microbiology , Phytoplankton , Seasons , Water Microbiology , Actinobacteria/classification , Actinobacteria/physiology , Phytoplankton/classification , Phytoplankton/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...