Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heredity (Edinb) ; 112(2): 114-21, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24022498

ABSTRACT

Theoretically, the dynamics of clonal and genetic diversities of clonal plant populations are strongly influenced by the competition among clones and rate of seedling recruitment, but little empirical assessment has been made of such dynamics through temporal genetic surveys. We aimed to quantify 3 years of evolution in the clonal and genetic composition of Zostera marina meadows, comparing parameters describing clonal architecture and genetic diversity at nine microsatellite markers. Variations in clonal structure revealed a decrease in the evenness of ramet distribution among genets. This illustrates the increasing dominance of some clonal lineages (multilocus lineages, MLLs) in populations. Despite the persistence of these MLLs over time, genetic differentiation was much stronger in time than in space, at the local scale. Contrastingly with the short-term evolution of clonal architecture, the patterns of genetic structure and genetic diversity sensu stricto (that is, heterozygosity and allelic richness) were stable in time. These results suggest the coexistence of (i) a fine grained (at the scale of a 20 × 30 m quadrat) stable core of persistent genets originating from an initial seedling recruitment and developing spatial dominance through clonal elongation; and (ii) a local (at the scale of the meadow) pool of transient genets subjected to annual turnover. This simultaneous occurrence of initial and repeated recruitment strategies highlights the different spatial scales at which distinct evolutionary drivers and mating systems (clonal competition, clonal growth, propagule dispersal and so on) operate to shape the dynamics of populations and the evolution of polymorphism in space and time.


Subject(s)
Genetic Variation , Mosaicism , Tracheophyta/genetics , Alleles , Evolution, Molecular , Genetics, Population , Time Factors
2.
Mol Ecol ; 19(12): 2394-407, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20465589

ABSTRACT

Seagrasses structure some of the world's key coastal ecosystems presently in decline due to human activities and global change. The ability to cope with environmental changes and the possibilities for shifts in distribution range depend largely on their evolvability and dispersal potential. As large-scale data usually show strong genetic structure for seagrasses, finer-grained work is needed to understand the local processes of dispersal, recruitment and colonization that could explain the apparent lack of exchange across large distances. We aimed to assess the fine-grained genetic structure of one of the most important and widely distributed seagrasses, Zostera marina, from seven meadows in Brittany, France. Both classic population genetics and network analysis confirmed a pattern of spatial segregation of polymorphism at both regional and local scales. One location exhibiting exclusively the variety 'angustifolia' did not appear more differentiated than the others, but instead showed a central position in the network analysis, confirming the status of this variety as an ecotype. This phenotypic diversity and the high allelic richness at nine microsatellites (2.33-9.67 alleles/locus) compared to levels previously reported across the distribution range, points to Brittany as a centre of diversity for Z. marina at both genetic and phenotypic levels. Despite dispersal potential of several 100 m, a significant pattern of genetic differentiation, even at fine-grained scale, revealed 'genetic patchiness'. Meadows seem to be composed of a mosaic of clones with distinct origins in space and time, a result that calls into question the accuracy of the concept of populations for such partially clonal species.


Subject(s)
Genetics, Population , Polymorphism, Genetic , Zosteraceae/genetics , DNA, Plant/genetics , DNA, Ribosomal Spacer/genetics , France , Microsatellite Repeats , Models, Genetic , Phenotype , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...