Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Protein Pept Lett ; 28(7): 761-768, 2021.
Article in English | MEDLINE | ID: mdl-33302826

ABSTRACT

BACKGROUND: The microbiome is now known for its important role in whole-body homeostasis. A dysbiosis of the normal microbiota is correlated with metabolic disorders. In this sense, the search for compounds able to modulate the microbiome is needed. Resveratrol, a natural compound found in grapes seems to be a promising candidate. OBJECTIVE: In this study, our motivation was to evaluate the effects of the association between Resveratrol and Lactococcus lactis, a probiotic, on the composition of the gastrointestinal microbiota and body weight of mice. METHODS: Twenty female mice were divided into 4 groups: (1) standard diet, (2) standard diet plus Lactococcus lactis, (3) standard diet plus resveratrol, and (4) standard diet plus Lactococcus lactis and resveratrol. At the end of the treatment period, samples of blood, mucus, stomach, and small and large intestines were collected for analysis. Total levels of Immunoglobulin A and Immunoglobulin E, Lac+ and Lac- bacteria and Lactobacillus were measured. RESULTS: The main results indicate that the association between resveratrol and probiotics was able to decrease mice body weight, as compared to the other groups, in addition to decrease the number of Lac- bacteria and increasing the number of Lac+ bacteria. The levels of secretory IgA were also decreased, compared to the animals treated with only probiotics or resveratrol. CONCLUSION: We observed potential synergism between Resveratrol and Lactococcus lactis mainly in modulating the stomach and intestinal microbiota.


Subject(s)
Body Weight/drug effects , Enterobacteriaceae/drug effects , Gastrointestinal Microbiome/drug effects , Lactococcus lactis/immunology , Probiotics/administration & dosage , Resveratrol/administration & dosage , Animals , Body Weight/immunology , Diet/methods , Enterobacteriaceae/growth & development , Enterobacteriaceae/immunology , Female , Gastrointestinal Microbiome/immunology , Immunoglobulin A/biosynthesis , Immunoglobulin E/blood , Intestine, Large/drug effects , Intestine, Large/immunology , Intestine, Large/microbiology , Intestine, Small/drug effects , Intestine, Small/immunology , Intestine, Small/microbiology , Mice , Mice, Inbred C57BL , Stomach/drug effects , Stomach/immunology , Stomach/microbiology
2.
Am J Physiol Heart Circ Physiol ; 312(3): H437-H445, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-27940965

ABSTRACT

Obesity is assumed to be a major cause of human essential hypertension; however, the mechanisms responsible for weight-related increase in blood pressure (BP) are not fully understood. The prevalence of hypertension induced by obesity has grown over the years, and the role of the renin-angiotensin-aldosterone system (RAAS) in this process continues to be elucidated. In this scenario, the ob/ob mice are a genetic obesity model generally used for metabolic disorder studies. These mice are normotensive even though they present several metabolic conditions that predispose them to hypertension. Although the normotensive trait in these mice is associated with the poor activation of sympathetic nervous system by the lack of leptin, we demonstrated that ob/ob mice present massively increased aminopeptidase A (APA) activity in the circulation. APA enzyme metabolizes angiotensin (ANG) II into ANG III, a peptide associated with intrarenal angiotensin type 2 (AT2) receptor activation and induction of natriuresis. In these mice, we found increased ANG-III levels in the circulation, high AT2 receptor expression in the kidney, and enhanced natriuresis. AT2 receptor blocking and APA inhibition increased BP, suggesting the ANG III-AT2 receptor axis as a complementary BP control mechanism. Circulating APA activity was significantly reduced by weight loss independently of leptin, indicating the role of fat tissue in APA production. Therefore, in this study we provide new data supporting the role of APA in BP control in ob/ob mouse strain. These findings improve our comprehension about obesity-related hypertension and suggest new tools for its treatment.NEW & NOTEWORTHY In this study, we reported an increased angiotensin III generation in the circulation of ob/ob mice caused by a high aminopeptidase A activity. These findings are associated with an increased natriuresis found in these mice and support the role of renin-angiotensin-aldosterone system as additional mechanism regulating blood pressure in this genetic obese strain.


Subject(s)
Blood Pressure , Glutamyl Aminopeptidase/metabolism , Obesity/physiopathology , Receptor, Angiotensin, Type 2/metabolism , Angiotensin II Type 1 Receptor Blockers/pharmacology , Angiotensins/blood , Animals , Caloric Restriction , Cyclic GMP/metabolism , Diet, High-Fat , Enzyme Inhibitors/pharmacology , Glutamyl Aminopeptidase/antagonists & inhibitors , Glutamyl Aminopeptidase/blood , Kidney/enzymology , Leptin/pharmacology , Male , Mice , Mice, Inbred C57BL , Sodium/urine
3.
Hypertension ; 67(1): 214-22, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26597823

ABSTRACT

Loss of peroxisome proliferator-activated receptor-γ (PPARγ) function causes hypertension, whereas its activation lowers blood pressure. Evidence suggests that these effects may be attributable to PPARγ activity in the vasculature. However, the specific transcriptional targets of PPARγ in vessels remain largely unidentified. In this study, we examined the role of smooth muscle PPARγ during salt-sensitive hypertension and investigated its transcriptional targets and functional effect. Transgenic mice expressing dominant-negative PPARγ (S-P467L) in smooth muscle cells were more prone to deoxycorticosterone acetate-salt-induced hypertension and mesenteric arterial dysfunction compared with nontransgenic controls. Despite similar morphometry at baseline, vascular remodeling in conduit and small arteries was enhanced in S-P467L after deoxycorticosterone acetate-salt treatment. Gene expression profiling in aorta and mesenteric arteries revealed significantly decreased expression of tissue inhibitor of metalloproteinase-4 (TIMP-4) in S-P467L. Expression of TIMP-4 was increased by deoxycorticosterone acetate-salt treatment, but this increase was ablated in S-P467L. Interference with PPARγ activity either by treatment with a PPARγ inhibitor, GW9662, or by expressing P467L PPARγ markedly suppressed TIMP-4 in primary smooth muscle cells. PPARγ binds to a PPAR response element (PPRE) in chromatin close to the TIMP-4 gene in smooth muscle cells, suggesting that TIMP-4 is a novel target of PPARγ. The interference with PPARγ and decrease in TIMP-4 were accompanied by an increase in total matrix metalloproteinase activity. PPARγ-mediated loss of TIMP-4 increased, whereas overexpression of TIMP-4 decreased smooth muscle cell migration in a scratch assay. Our findings highlight a protective mechanism induced by PPARγ in deoxycorticosterone acetate-salt treatment, establishing a novel mechanistic link between PPARγ and TIMP-4.


Subject(s)
DNA/genetics , Gene Expression Regulation , Hypertension/genetics , Muscle, Smooth, Vascular/metabolism , PPAR gamma/genetics , Tissue Inhibitor of Metalloproteinases/genetics , Animals , Blood Pressure/physiology , Desoxycorticosterone Acetate/toxicity , Disease Models, Animal , Hypertension/metabolism , Hypertension/physiopathology , Mice , Mice, Transgenic , Muscle, Smooth, Vascular/physiopathology , PPAR gamma/metabolism , Tissue Inhibitor of Metalloproteinases/antagonists & inhibitors , Vasoconstriction , Tissue Inhibitor of Metalloproteinase-4
4.
Hypertension ; 65(6): 1341-8, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25895586

ABSTRACT

Endoplasmic reticulum stress has become an important mechanism in hypertension. We examined the role of endoplasmic reticulum stress in mediating the increased saline-intake and hypertensive effects in response to deoxycorticosterone acetate (DOCA)-salt. Intracerebroventricular delivery of the endoplasmic reticulum stress-reducing chemical chaperone tauroursodeoxycholic acid did not affect the magnitude of hypertension, but markedly decreased saline-intake in response to DOCA-salt. Increased saline-intake returned after tauroursodeoxycholic acid was terminated. Decreased saline-intake was also observed after intracerebroventricular infusion of 4-phenylbutyrate, another chemical chaperone. Immunoreactivity to CCAAT homologous binding protein, a marker of irremediable endoplasmic reticulum stress, was increased in the subfornical organ and supraoptic nucleus of DOCA-salt mice, but the signal was absent in control and CCAAT homologous binding protein-deficient mice. Electron microscopy revealed abnormalities in endoplasmic reticulum structure (decrease in membrane length, swollen membranes, and decreased ribosome numbers) in the subfornical organ consistent with endoplasmic reticulum stress. Subfornical organ-targeted adenoviral delivery of GRP78, a resident endoplasmic reticulum chaperone, decreased DOCA-salt-induced saline-intake. The increase in saline-intake in response to DOCA-salt was blunted in CCAAT homologous binding protein-deficient mice, but these mice exhibited a normal hypertensive response. We conclude that (1) brain endoplasmic reticulum stress mediates the saline-intake, but not blood pressure response to DOCA-salt, (2) DOCA-salt causes endoplasmic reticulum stress in the subfornical organ, which when attenuated by GRP78 blunts saline-intake, and (3) CCAAT homologous binding protein may play a functional role in DOCA-salt-induced saline-intake. The results suggest a mechanistic distinction between the importance of endoplasmic reticulum stress in mediating effects of DOCA-salt on saline-intake and blood pressure.


Subject(s)
Brain/metabolism , Desoxycorticosterone Acetate/pharmacology , Endoplasmic Reticulum Stress/drug effects , Hypertension/physiopathology , Sodium Chloride/pharmacology , Analysis of Variance , Animals , Blood Pressure/drug effects , Disease Models, Animal , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress/physiology , Infusions, Intraventricular , Mice , Mice, Inbred C57BL , Random Allocation , Reference Values , Sensitivity and Specificity , Sodium Chloride/metabolism , Statistics, Nonparametric , Subfornical Organ/drug effects , Subfornical Organ/physiopathology
5.
Curr Hypertens Rep ; 16(9): 469, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25090964

ABSTRACT

Pulmonary hypertension (PH) is a progressive lung disease characterized by elevated pressure in the lung vasculature, resulting in right-sided heart failure and premature death. The pathogenesis of PH is complex and multifactorial, involving a dysregulated autonomic nervous system and immune response. Inflammatory mechanisms have been linked to the development and progression of PH; however, these are usually restricted to systemic and/or local lung tissue. Inflammation within the CNS, often referred to as neuroinflammation involves activation of the microglia, the innate immune cells that are found specifically in the brain and spinal cord. Microglial activation results in the release of several cytokines and chemokines that trigger neuroinflammation, and has been implicated in the pathogenesis of several disease conditions such as Alzheimer's, Parkinson's, hypertension, atherosclerosis, and metabolic disorders. In this review, we introduce the concept of neuroinflammation in the context of PH, and discuss possible strategies that could be developed for PH therapy based on this concept.


Subject(s)
Hypertension, Pulmonary/complications , Inflammation/etiology , Microglia/pathology , Disease Progression , Humans , Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/physiopathology , Inflammation/pathology , Pulmonary Wedge Pressure
6.
Am J Physiol Regul Integr Comp Physiol ; 304(10): R818-28, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23535460

ABSTRACT

An indispensable role for the brain renin-angiotensin system (RAS) has been documented in most experimental animal models of hypertension. To identify the specific efferent pathway activated by the brain RAS that mediates hypertension, we examined the hypothesis that elevated arginine vasopressin (AVP) release is necessary for hypertension in a double-transgenic model of brain-specific RAS hyperactivity (the "sRA" mouse model). sRA mice experience elevated brain RAS activity due to human angiotensinogen expression plus neuron-specific human renin expression. Total daily loss of the 4-kDa AVP prosegment (copeptin) into urine was grossly elevated (≥8-fold). Immunohistochemical staining for AVP was increased in the supraoptic nucleus of sRA mice (~2-fold), but no quantitative difference in the paraventricular nucleus was observed. Chronic subcutaneous infusion of a nonselective AVP receptor antagonist conivaptan (YM-087, Vaprisol, 22 ng/h) or the V(2)-selective antagonist tolvaptan (OPC-41061, 22 ng/h) resulted in normalization of the baseline (~15 mmHg) hypertension in sRA mice. Abdominal aortas and second-order mesenteric arteries displayed AVP-specific desensitization, with minor or no changes in responses to phenylephrine and endothelin-1. Mesenteric arteries exhibited substantial reductions in V(1A) receptor mRNA, but no significant changes in V(2) receptor expression in kidney were observed. Chronic tolvaptan infusion also normalized the (5 mmol/l) hyponatremia of sRA mice. Together, these data support a major role for vasopressin in the hypertension of mice with brain-specific hyperactivity of the RAS and suggest a primary role of V(2) receptors.


Subject(s)
Blood Pressure/physiology , Brain/metabolism , Hypertension/metabolism , Renin-Angiotensin System/physiology , Vasopressins/metabolism , Animals , Antidiuretic Hormone Receptor Antagonists , Benzazepines/pharmacology , Blood Pressure/drug effects , Brain/drug effects , Gene Expression/drug effects , Hypertension/genetics , Hypothalamus/drug effects , Hypothalamus/metabolism , Mice , Mice, Transgenic , Receptors, Vasopressin/genetics , Receptors, Vasopressin/metabolism , Renin-Angiotensin System/drug effects , Tolvaptan , Vasopressins/genetics
7.
Hypertension ; 61(3): 716-22, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23266541

ABSTRACT

Although elevated renin-angiotensin system activity and angiotensinergic signaling within the brain are required for hypertension, polydipsia, and increased metabolic rate induced by deoxycorticosterone acetate (DOCA)-salt, the contribution of specific receptor subtypes and brain nuclei mediating these responses remains poorly defined. We hypothesized that angiotensin type 1a receptors (AT(1a)R) within the subfornical organ (SFO) mediate these responses. Transgenic mice carrying a conditional allele of the endogenous AT(1a)R (AT(1a)R(flox)) were administered an adenovirus encoding Cre-recombinase and enhanced green fluorescent protein (eGFP) or adenovirus encoding eGFP alone into the lateral cerebral ventricle. Adenovirus encoding Cre-recombinase reduced AT(1a)R mRNA and induced recombination in AT(1a)R(flox) genomic DNA specifically in the SFO, without significant effect in the paraventricular or arcuate nuclei, and also induced SFO-specific recombination in ROSA(TdTomato) reporter mice. The effect of SFO-targeted ablation of endogenous AT(1a)R was evaluated in AT(1a)R(flox) mice at 3 time points: (1) baseline, (2) 1 week after virus injection but before DOCA-salt, and (3) after 3 weeks of DOCA-salt. DOCA-salt-treated mice with deletion of AT(1a)R in SFO exhibited a blunted increase in arterial pressure. Increased sympathetic cardiac modulation and urine copeptin, a marker of vasopressin release, were both significantly reduced in DOCA-salt mice when AT(1a)R was deleted in the SFO. Additionally, deletion of AT(1a)R in the SFO significantly attenuated the polydipsia, polyuria, and sodium intake in response to DOCA-salt. Together, these data highlight the contribution of AT(1a)R in the SFO to arterial pressure regulation potentially through changes on sympathetic cardiac modulation, vasopressin release, and hydromineral balance in the DOCA-salt model of hypertension.


Subject(s)
Desoxycorticosterone/adverse effects , Hypertension/chemically induced , Mineralocorticoids/adverse effects , Receptor, Angiotensin, Type 1/physiology , Subfornical Organ/drug effects , Subfornical Organ/physiopathology , Animals , Arterial Pressure/drug effects , Biomarkers/urine , Glycopeptides/urine , Heart/drug effects , Heart/innervation , Male , Mice , Mice, Transgenic , Polydipsia/chemically induced , Polyuria/chemically induced , Receptor, Angiotensin, Type 1/genetics , Recombination, Genetic , Sodium/metabolism , Sympathetic Nervous System/drug effects
8.
Am J Physiol Heart Circ Physiol ; 303(2): H197-206, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-22610169

ABSTRACT

The sympathetic nervous system, leptin, and renin-angiotensin system (RAS) have been implicated in obesity-associated hypertension. There is increasing evidence for the presence of both leptin and angiotensin II receptors in several key brain cardiovascular and metabolic control regions. We tested the hypothesis that the brain RAS plays a facilitatory role in the sympathetic nerve responses to leptin. In rats, intracerebroventricular (ICV) administration of losartan (5 µg) selectively inhibited increases in renal and brown adipose tissue (BAT) sympathetic nerve activity (SNA) produced by leptin (10 µg ICV) but did not reduce the SNA responses to corticotrophin-releasing factor (CRF) or the melanocortin receptor agonist MTII. In mice with deletion of angiotensin II type-1a receptors (AT(1a)R(-/-)), increases in renal and BAT SNA induced by leptin (2 µg ICV) were impaired whereas SNA responses to MTII were preserved. Decreases in food intake and body weight with ICV leptin did not differ in AT(1a)R(-/-) vs. AT(1a)R(+/+) mice. ICV leptin in rats increased AT(1a)R and angiotensin-converting enzyme (ACE) mRNA in the subfornical organ and AT(1a)R mRNA in the arcuate nucleus, suggesting leptin-induced upregulation of the brain RAS in specific brain regions. To evaluate the role of de novo production of brain angiotensin II in SNA responses to leptin, we treated rats with captopril (12.5 µg ICV). Captopril attenuated leptin effects on renal and BAT SNA. In conclusion, these studies provide evidence that the brain RAS selectively facilitates renal and BAT sympathetic nerve responses to leptin while sparing effects on food intake.


Subject(s)
Brain/physiology , Leptin/physiology , Renin-Angiotensin System/physiology , Sympathetic Nervous System/physiology , Adipose Tissue/drug effects , Adipose Tissue/innervation , Angiotensin II/biosynthesis , Angiotensin II Type 1 Receptor Blockers/pharmacology , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Animals , Body Weight/drug effects , Body Weight/physiology , Captopril/pharmacology , Corticotropin-Releasing Hormone/pharmacology , Eating/drug effects , Eating/psychology , Gene Deletion , Losartan/pharmacology , Male , Mice , Mice, Inbred C57BL , Peptidyl-Dipeptidase A/biosynthesis , Rats , Rats, Sprague-Dawley , Receptor, Angiotensin, Type 1/genetics , Receptor, Angiotensin, Type 1/physiology , alpha-MSH/analogs & derivatives , alpha-MSH/pharmacology
9.
Hypertension ; 57(3): 600-7, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21263123

ABSTRACT

Low-renin hypertension accounts for ≈ 25% of essential hypertensive patients. It is modeled in animals by chronic delivery of deoxycorticosterone acetate and excess dietary sodium (the DOCA-salt model). Previous studies have demonstrated that DOCA-salt hypertension is mediated through activation of the brain renin-angiotensin system. Here, we demonstrate robust metabolic phenotypes of DOCA-salt treatment. Male C57BL/6J mice (6 to 8 weeks old) received a subcutaneous pellet of DOCA (50 mg for 21 days) and were offered a 0.15 mol/L NaCl drink solution in addition to regular chow and tap water. Treatment resulted in mild hypertension, a blunting of weight gain, gross polydipsia, polyuria, and sodium intake, alterations in urinary sodium and potassium turnover, and serum sodium retention. Most strikingly, DOCA-salt mice exhibited no difference in food intake but did exhibited a large elevation in basal metabolic rate. Normalization of blood pressure by hydralazine (500 mg/L in drink solutions) attenuated the hydromineral phenotypes and renal renin suppression effects of DOCA-salt but had no effect on the elevated metabolic rate. In contrast, intracerebroventricular infusion of the angiotensin II type 1 receptor antagonist losartan (5 µg/h) attenuated the elevation in metabolic rate with DOCA-salt treatment. Together, these data illustrate the necessity of angiotensinergic signaling within the brain, independent of blood pressure alterations, in the metabolic consequences of DOCA-salt treatment.


Subject(s)
Angiotensins/metabolism , Basal Metabolism/drug effects , Brain/metabolism , Desoxycorticosterone/pharmacology , Hypertension/metabolism , Renin-Angiotensin System/physiology , Analysis of Variance , Animals , Basal Metabolism/physiology , Blood Pressure/drug effects , Blood Pressure/physiology , Brain/drug effects , Calorimetry , Desoxycorticosterone/metabolism , Eating/drug effects , Eating/physiology , Hypertension/chemically induced , Male , Mice , Mice, Inbred C57BL , Renin/metabolism , Renin-Angiotensin System/drug effects , Signal Transduction , Sodium, Dietary/administration & dosage , Sodium, Dietary/metabolism , Statistics, Nonparametric
10.
J Mol Med (Berl) ; 88(4): 383-90, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20012594

ABSTRACT

The leptin-deficient ob/ob mice are insulin resistant and obese. However, the control of blood pressure in this model is not well defined. The goal of this study was to evaluate the role of leptin and of the renin-angiotensin system in the cardiovascular abnormalities observed in obesity using a model lacking leptin. To this purpose, we measured blood pressure in ob/ob and control animals by radiotelemetry combined with fast Fourier transformation before and after both leptin and enalapril treatment. Autonomic function was assessed pharmacologically. Blood pressure during daytime was slightly higher in the ob/ob compared to control mice, while no difference in heart rate was observed. Blood pressure response to trimetaphane and heart rate response to metoprolol were greater in ob/ob mice than in control littermates indicating an activated sympathetic nervous system. Heart rate response to atropine was attenuated. Baroreflex sensitivity and heart rate variability were blunted in ob/ob mice, while low frequency of systolic blood pressure variability was found increased. Chronic leptin replacement reduced blood pressure and reversed the impaired autonomic function observed in ob/ob mice. Inhibition of angiotensin-converting enzyme by enalapril treatment had similar effects, prior to the loss of weight. These findings suggest that the renin-angiotensin system is involved in the autonomic dysfunction caused by the lack of leptin in ob/ob mice and support a role of this interplay in the pathogenesis of obesity, hypertension, and metabolic syndrome.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/metabolism , Obesity/genetics , Angiotensin II/metabolism , Animals , Baroreflex , Disease Models, Animal , Fourier Analysis , Hypertension/blood , Hypertension/metabolism , Leptin/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Peptidyl-Dipeptidase A/metabolism , Renin-Angiotensin System
11.
Hypertension ; 51(3): 689-95, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18212275

ABSTRACT

Angiotensin-converting enzyme (ACE) is an ectoprotein able to modulate the activity of a plethora of compounds, among them angiotensin I and bradykinin. Despite several decades of research, new aspects of the mechanism of action of ACE have been elucidated, expanding our understanding of its role not only in cardiovascular regulation but also in different areas. Recent findings have ascribed an important role for ACE/kinin B(2) receptor heterodimerization in the pharmacological properties of the receptor. In this work, we tested the hypothesis that this interaction also affects ACE enzymatic activity. ACE catalytic activity was analyzed in Chinese hamster ovary cell monolayers coexpressing the somatic form of the enzyme and the receptor coding region using as substrate the fluorescence resonance energy transfer peptide Abz-FRK(Dnp)P-OH. Results show that the coexpression of the kinin B(2) receptor leads to an augmentation in ACE activity. In addition, this effect could be blocked by the B(2) receptor antagonist icatibant. The hypothesis was also tested in endothelial cells, a more physiological system, where both proteins are naturally expressed. Endothelial cells from genetically ablated kinin B(2) receptor mice showed a decreased ACE activity when compared with wild-type mice cells. In summary, this is the first report showing that the ACE/kinin B(2) receptor interaction modulates ACE activity. Taking into account the interplay among ACE, ACE inhibitors, and kinin receptors, we believe that these results will shed new light into the arena of the controversial search for the mechanism controlling these interactions.


Subject(s)
Peptidyl-Dipeptidase A/metabolism , Receptor, Bradykinin B2/metabolism , Animals , Bradykinin/analogs & derivatives , Bradykinin/pharmacology , Bradykinin B2 Receptor Antagonists , CHO Cells , Cells, Cultured , Cricetinae , Cricetulus , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Female , Mice , Mice, Inbred C57BL , Mice, Knockout , Ovary/drug effects , Ovary/metabolism , Ovary/pathology , Receptor, Bradykinin B2/genetics , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...