Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 12(9)2022 May 09.
Article in English | MEDLINE | ID: mdl-35564316

ABSTRACT

The dielectric function and the bandgap of BiFe0.5Cr0.5O3 thin films were determined from spectroscopic ellipsometry and compared with that of the parent compounds BiFeO3 and BiCrO3. The bandgap value of BiFe0.5Cr0.5O3 is lower than that of BiFeO3 and BiCrO3, due to an optical transition at ~2.27 eV attributed to a charge transfer excitation between the Cr and Fe ions. This optical transition enables new phonon modes which have been investigated using Raman spectroscopy by employing multi-wavelengths excitation. The appearance of a new Raman mode at ~670 cm-1 with a strong intensity dependence on the excitation line and its higher order scattering activation was found for both BiFe0.5Cr0.5O3 thin films and BiFexCr1-xO3 polycrystalline bulk samples. Furthermore, Raman spectroscopy was also used to investigate temperature induced structural phase transitions in BiFe0.3Cr0.7O3.

2.
Nano Lett ; 20(12): 8789-8795, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33253587

ABSTRACT

We demonstrate the synthesis of self-assembled three-dimensional nanocomposite thin films consisting of NiO nanocolumns in an layered Aurivillius phase matrix. The structures were grown on single-crystal SrTiO3 substrates via pulsed laser deposition (PLD) with single ceramic (PbTiO3)x(BiNi2/3Nb1/3O3)1-x targets. The nanocolumns, which are about 10 nm in diameter each, extend over the entire film thickness of up to 225 nm. We reveal the difference in electrical conduction properties of the nanocolumns and the surrounding matrix on the nanoscale via conductive atomic force microscopy. The nanocomposite thin films exhibit improved photovoltaic performance compared to both pure PbTiO3 and homogeneous Aurivillius phase thin films.

3.
Dalton Trans ; 48(23): 8350-8360, 2019 Jun 21.
Article in English | MEDLINE | ID: mdl-31112177

ABSTRACT

A detailed study of polycrystalline indium-based In1-x□xIn2S4 (x = 0.16, 0.22, 0.28, and 0.33) thiospinel is presented (□- vacancy). Comprehensive investigation of synthesis conditions, phase composition and thermoelectric properties was performed by means of various diffraction, microscopic and spectroscopic methods. Single-phase α- and ß-In1-x□xIn2S4 were found in samples with 0.16 ≤x≤ 0.22 and x = 0.33 (In2S3), respectively. In contrast, it is shown that In0.72□0.28In2S4 contains both α- and ß-polymorphic modifications. Consequently, the thermoelectric characterization of well-defined α- and ß-In1-x□xIn2S4 is conducted for the first time. α-In1-x□xIn2S4 (x = 0.16 and 0.22) revealed n-type semiconducting behavior, a large Seebeck coefficient (>|200|µV K-1) and moderate charge carrier mobility on the level of ∼20 cm2 V-1 s-1 at room temperature (RT). Decreases in charge carrier concentration (increase of electrical resistivity) and thermal conductivity (even below 0.6 W m-1 K-1 at 760 K) for larger In-content are observed. Although ß-In0.67□0.33In2S4 (ß-In2S3) is a distinct polymorphic modification, it followed the abovementioned trend in thermal conductivity and displayed significantly higher charge carrier mobility (∼104 cm2 V-1 s-1 at RT). These findings indicate that structural disorder in the α-modification affects both electronic and thermal properties in this thiospinel. The reduction of thermal conductivity counterbalances a lowered power factor and, thus, the thermoelectric figure of merit ZTmax = 0.2 at 760 K is nearly the same for both α- and ß-In1-x□xIn2S4.

4.
Sci Rep ; 9(1): 379, 2019 Jan 23.
Article in English | MEDLINE | ID: mdl-30674911

ABSTRACT

Multiferroic BiFeO3 crystals were investigated by means of micro-Raman spectroscopy using the laser wavelengths of 442 nm (resonant conditions) and 633 nm (non-resonant conditions). The azimuthal angle dependence of the intensity of the Raman modes allowed their symmetry assignment. The experimental data are consistent with a simulation based on Raman tensor formalism. Mixed symmetries were taken into account, considering the orientation of the crystal optic axis along a pseudo-cubic <111> direction. The strong anisotropic intensity variation of some of the polar Raman modes was used for line scans and mappings in order to identify ferroelastic domain patterns. The line scans performed with different excitation wavelengths and hence different information depths indicate a tilt of the domain walls with respect to the sample surface. The domain distribution found by Raman spectroscopy is in very good agreement with the finding of electron back scattering diffraction.

5.
Sci Rep ; 8(1): 13880, 2018 Sep 17.
Article in English | MEDLINE | ID: mdl-30224739

ABSTRACT

In the present work, we report on development of three-dimensional flexible architectures consisting of an extremely porous three-dimensional Aerographite (AG) backbone decorated by InP micro/nanocrystallites grown by a single step hydride vapor phase epitaxy process. The systematic investigation of the hybrid materials by scanning electron microscopy demonstrates a rather uniform spatial distribution of InP crystallites without agglomeration on the surface of Aerographite microtubular structures. X-ray diffraction, transmission electron microscopy and Raman scattering analysis demonstrate that InP crystallites grown on bare Aerographite are of zincblende structure, while a preliminary functionalization of the Aerographite backbone with Au nanodots promotes the formation of crystalline In2O3 nanowires as well as gold-indium oxide core-shell nanostructures. The electromechanical properties of the hybrid AG-InP composite material are shown to be better than those of previously reported bare AG and AG-GaN networks. Robustness, elastic behavior and excellent translation of the mechanical deformation to variations in electrical conductivity highlight the prospects of AG-InP applications in tactile/strain sensors and other device structures related to flexible electronics.

6.
Beilstein J Nanotechnol ; 6: 2388-95, 2015.
Article in English | MEDLINE | ID: mdl-26734529

ABSTRACT

We present the results of an investigation of surface-enhanced Raman scattering (SERS) by optical phonons in colloidal CdSe nanocrystals (NCs) homogeneously deposited on both arrays of Au nanoclusters and Au dimers using the Langmuir-Blodgett technique. The coverage of the deposited NCs was less than one monolayer, as determined by transmission and scanning electron microscopy. SERS by optical phonons in CdSe nanocrystals showed a significant enhancement that depends resonantly on the Au nanocluster and dimer size, and thus on the localized surface plasmon resonance (LSPR) energy. The deposition of CdSe nanocrystals on the Au dimer nanocluster arrays enabled us to study the polarization dependence of SERS. The maximal SERS signal was observed for light polarization parallel to the dimer axis. The polarization ratio of the SERS signal parallel and perpendicular to the dimer axis was 20. The SERS signal intensity was also investigated as a function of the distance between nanoclusters in a dimer. Here the maximal SERS enhancement was observed for the minimal distance studied (about 10 nm), confirming the formation of SERS "hot spots".

7.
Nanoscale Res Lett ; 6(1): 79, 2011 Jan 12.
Article in English | MEDLINE | ID: mdl-21711581

ABSTRACT

Resonant Raman study reveals the noticeable effect of the ligand exchange on the nanocrystal (NC) surface onto the phonon spectra of colloidal CdTe NC of different size and composition. The oleic acid ligand exchange for pyridine ones was found to change noticeably the position and width of the longitudinal optical (LO) phonon mode, as well as its intensity ratio to overtones. The broad shoulder above the LO peak frequency was enhanced and sharpened after pyridine treatment, as well as with decreasing NC size. The low-frequency mode around 100 cm-1 which is commonly related with the disorder-activated acoustical phonons appears in smaller NCs but is not enhanced after pyridine treatment. Surprisingly, the feature at low-frequency shoulder of the LO peak, commonly assigned to the surface optical phonon mode, was not sensitive to ligand exchange and concomitant close packing of the NCs. An increased structural disorder on the NC surface, strain and modified electron-phonon coupling is discussed as the possible reason of the observed changes in the phonon spectrum of ligand-exchanged CdTe NCs.PACS: 63.20.-e, 78.30.-j, 78.67.-n, 78.67.Bf.

8.
J Phys Chem A ; 113(1): 315-24, 2009 Jan 08.
Article in English | MEDLINE | ID: mdl-19086796

ABSTRACT

We analyze absorption, photoluminescence (PL), and resonant Raman spectra of N,N'-diphenyl-N,N'-bis(3-methylphenyl)-(1,1'-biphenyl)-4,4'-diamine (TPD), with the aim of providing a microscopic interpretation of a significant Stokes shift of about 0.5 eV that makes this material suitable for stimulated emission. The optical spectra were measured for TPD dissolved in toluene and chloroform, as well as for polystyrene films doped with varying amounts of TPD. In addition, we measured preresonant and resonant Raman spectra, giving direct access to the vibrational modes elongated in the relaxed excited geometry of the molecule. The experimental data are interpreted with calculations of the molecular geometry in the electronic ground state and the optically excited state using density functional theory. Several strongly elongated high-frequency modes within the carbon rings results in a vibronic progression with a calculated spacing of 158 meV, corroborated by the observation of vibrational sidebands in the PL spectra. The peculiarities of the potential energy surfaces related to a twisting around the central bond in the biphenyl core of TPD allow to quantify the asymmetry between the line shapes observed in absorption and emission.

SELECTION OF CITATIONS
SEARCH DETAIL
...