Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Sci ; 10(8)2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32824185

ABSTRACT

BACKGROUND: Recent studies have demonstrated that brain activities using NIRS (near-infrared spectroscopy) at baseline during cognitive tasks (e.g., N-back task) can predict the cognitive benefits of a cognitive training. In this study, we investigated whether brain activities during brain training game (BT) at baseline would predict benefits to cognitive functions after the intervention period. METHODS: In a four-week double-blinded randomized control trial (RCT) 72 young adults were randomly assigned to one of the two groups: participants in the BT group played specific game, called the Brain Age. Participants in an active control group (ACT) played the puzzle game Tetris. We measured brain activity during the training games using two channel NIRS before the intervention period. Cognitive functions were tested before and after the four-week intervention period. RESULTS: The BT showed significant improvements in inhibition, processing speed, and working memory performance compared to ACT. The left and right DLPFC (dorsolateral prefrontal cortex) brain activities during the BT at baseline were associated with improvements in inhibition and processing speed. DISCUSSION: This randomized control trial first provides scientific evidence that DLPFC activities during BT at baseline can predict cognitive improvements after a four-week intervention period.

2.
Front Aging Neurosci ; 11: 260, 2019.
Article in English | MEDLINE | ID: mdl-31619984

ABSTRACT

Background: Elderly people are affected by processes leading to decline in various aspects of daily living that impair their quality of life. Regarding neurological aspects, executive functions have been shown to be valuable for daily life and to slow decline during aging. Most intervention studies intended to improve cognitive functions during aging specifically address long-term destructive processes and countermeasures. However, to an increasing degree, studies also investigate the acute benefits that prove to be useful for daily life, such as physical exercise or video games in the form of exercise video gaming ("exergaming"). Because little is known about the change in cognitive ability following acute intervention of a combination of physical exercise and video gaming, especially for older people, this work is designed as an attempt to address this matter. Methods: This study is a randomized crossover controlled trial to test the response to an acute bout of high-intensity physical exercise followed by a short session with a brain training (Brain Age) video game in physically active and cognitively healthy older adults (60-70 years). The response is measured using Stroop task performance (cognitive task for executive function) and related brain activity assessed with functional magnetic resonance imaging (fMRI). The control conditions are low-intensity physical exercise and Tetris for video gaming. Discussion: This study is intended to provide insight into the alteration of executive function and its related brain activity from an acute intervention with a combination of physical exercise and video gaming in older people. The protocol might not be implementable in daily life to improve cognitive abilities. However, the results can support future studies that investigate cognition and the combination of physical exercise and video gaming. Moreover, it can provide real-life implications. Trial registration: This trial was registered in The University Hospital Medical Information Network Clinical Trials Registry (UMIN000033054). Registered 19 July 2018, https://upload.umin.ac.jp/cgi-open-bin/ctr/ctr_view.cgi?recptno=R000037687.

SELECTION OF CITATIONS
SEARCH DETAIL
...