Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Prot ; 70(3): 667-73, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17388057

ABSTRACT

Avian influenza viruses threaten the life of domestic terrestrial poultry and contaminate poultry meat and eggs. Recently, these viruses rarely infected humans but had a high mortality rate in Southeast Asia, the Middle East, and Egypt. Thereby, these viruses caused high economic costs for production of poultry and health protection. We inactivated a highly pathogenic avian influenza A virus of subtype H7N7 in cell culture medium and chicken meat by heat and high hydrostatic pressure. Because heat and pressure inactivation curves of the H7N7 virus showed deviations from first-order kinetics, a reaction order of 1.1 had to be selected. A mathematical inactivation model has been developed that is valid between 10 and 60 degrees C and up to 500 MPa, allowing the prediction of the reduction in virus titer in response to pressure, temperature, and treatment time. Incubation at 63 degrees C for 2 min and 500 MPa at 15 degrees C for 15 s inactivated more than 10(5) PFU/ml, respectively. Thus, we suggest high-pressure treatment of poultry and its products to avoid the possible health threat by highly pathogenic avian influenza viruses.


Subject(s)
Food Handling/methods , Hot Temperature , Hydrostatic Pressure , Influenza A Virus, H7N7 Subtype/pathogenicity , Meat/virology , Virus Inactivation , Animals , Chickens , Consumer Product Safety , Food Contamination , Food Microbiology , Humans , Influenza in Birds/transmission , Influenza, Human/transmission , Kinetics , Public Health , Temperature , Time Factors , Zoonoses
2.
J Virol ; 80(8): 3912-22, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16571808

ABSTRACT

The pestivirus bovine viral diarrhea virus (BVDV) was shown to bind to the bovine CD46 molecule, which subsequently promotes entry of the virus. To assess the receptor usage of BVDV type 1 (BVDV-1) and BVDV-2, 30 BVDV isolates including clinical samples were assayed for their sensitivity to anti-CD46 antibodies. With a single exception the infectivity of all tested strains of BVDV-1 and BVDV-2 was inhibited by anti-CD46 antibodies, which indicates the general usage of CD46 as a BVDV receptor. Molecular analysis of the interaction between CD46 and the BVD virion was performed by mapping the virus binding site on the CD46 molecule. Single complement control protein modules (CCPs) within the bovine CD46 were either deleted or replaced by analogous CCPs of porcine CD46, which does not bind BVDV. While the epitopes recognized by anti-CD46 monoclonal antibodies which block BVDV infection were attributed to CCP1 and CCP2, in functional assays only CCP1 turned out to be essential for BVDV binding and infection. Within CCP1 two short peptides on antiparallel beta strands were identified as crucial for the binding of BVDV. Exchanges of these two peptide sequences were sufficient for a loss of function in bovine CD46 as well as a gain of function in porcine CD46. Determination of the size constraints of CD46 revealed that a minimum length of four CCPs is essential for receptor function. An increase of the distance between the virus binding domain and the plasma membrane by insertion of one to six CCPs of bovine C4 binding protein exhibited only a minor influence on susceptibility to BVDV.


Subject(s)
Membrane Cofactor Protein/chemistry , Membrane Cofactor Protein/physiology , Protein Structure, Tertiary , Receptors, Virus/physiology , Amino Acid Sequence , Animals , Binding Sites , Cattle , Molecular Sequence Data , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...