Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Front Sports Act Living ; 6: 1289800, 2024.
Article in English | MEDLINE | ID: mdl-38406764

ABSTRACT

Introduction: Table tennis players perform visually guided visuomotor responses countlessly. The exposure of the visual system to frequent and long-term motion stimulation has been known to improve perceptual motion detection and discrimination abilities as a learning effect specific to that stimulus, so may also improve visuo-oculomotor performance. We hypothesized and verified that table tennis players have good spatial accuracy of saccades to moving targets. Methods: University table tennis players (TT group) and control participants with no striking-sports experience (Control group) wore a virtual reality headset and performed two ball-tracking tasks to track moving and stationary targets in virtual reality. The ball moved from a predetermined position on the opponent's court toward the participant's court. A total of 54 conditions were examined for the moving targets in combinations of three ball trajectories (familiar parabolic, unfamiliar descent, and unfamiliar horizontal), three courses (left, right, and center), and six speeds. Results and discussion: All participants primarily used catch-up saccades to track the moving ball. The TT group had lower mean and inter-trial variability in saccade endpoint error compared to the Control group, showing higher spatial accuracy and precision, respectively. It suggests their improvement of the ability to analyze the direction and speed of the ball's movement and predict its trajectory and future destination. The superiority of the spatial accuracy in the TT group was seen in both the right and the left courses for all trajectories but that of precision was for familiar parabolic only. The trajectory dependence of improved saccade precision in the TT group implies the possibility that the motion vision system is trained by the visual stimuli frequently encountered in table tennis. There was no difference between the two groups in the onset time or spatial accuracy of saccades for stationary targets appearing at various positions on the ping-pong table. Conclusion: Table tennis players can obtain high performance (spatial accuracy and precision) of saccades to track moving targets as a result of motion vision ability improved through a vast amount of visual and visuo-ocular experience in their play.

2.
Math Biosci Eng ; 19(4): 3509-3525, 2022 01 27.
Article in English | MEDLINE | ID: mdl-35341262

ABSTRACT

In the context of the theory of multi-agent systems, the shepherding problem refers to designing the dynamics of a herding agent, called a sheepdog, so that a given flock of agents, called sheep, is guided into a goal region. Although several effective methodologies and algorithms have been proposed in the last decade for the shepherding problem under various formulations, little research has been directed to the practically important case in which the flock contains sheep agents unresponsive to the sheepdog agent. To fill in this gap, we propose a sheepdog algorithm for guiding unresponsive sheep in this paper. In the algorithm, the sheepdog iteratively applies an existing shepherding algorithm, the farthest-agent targeting algorithm, while dynamically switching its destination. This procedure achieves the incremental growth of a controllable flock, which finally enables the sheepdog to guide the entire flock into the goal region. Furthermore, we illustrate by numerical simulations that the proposed algorithm can outperform the farthest-agent targeting algorithm.


Subject(s)
Algorithms
SELECTION OF CITATIONS
SEARCH DETAIL
...