Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Ultramicroscopy ; 151: 101-106, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25499690

ABSTRACT

The inelastic scattering of electrons in oriented crystals has been used to determine the positions of atoms within a crystal, to obtain site-dependent electron energy loss spectra and, more recently, to obtain an energy loss signal corresponding to the circular dichroism in X-ray absorption spectroscopy. The theoretical approaches currently used for the description of these processes are based on the nonrelativistic Schrödinger equation. Nowadays many experiments, however, are conducted with incident energies of 200 or 300 keV. Therefore it is indispensable to use a relativistic description for such processes based on the Dirac equation. Using the Coulomb gauge it is shown, that the fully relativistic cross sections for plane wave scattering are given by the modulus square of a sum of two terms: one describing the electrostatic interactions similar to the nonrelativistic theory plus one additional term describing the interaction of the specimen with the magnetic field produced by the incident electron. In crystals both terms can interfere leading to large deviations from nonrelativistic theory.

SELECTION OF CITATIONS
SEARCH DETAIL
...