Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
FEBS J ; 273(15): 3534-44, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16884494

ABSTRACT

Heat shock inducible lysyl-tRNA synthetase of Escherichia coli (LysU) is known to be a highly efficient diadenosine 5',5'''-P1,P4-tetraphosphate (Ap4A) synthase. However, we use an ion-exchange HPLC technique to demonstrate that active LysU mixtures actually have a dual catalytic activity, initially producing Ap4A from ATP, before converting that tetraphosphate to a triphosphate. LysU appears to be an effective diadenosine 5',5'''-P1,P3-triphosphate (Ap3A) synthase. Mechanistic investigations reveal that Ap3A formation requires: (a) that the second step of Ap4A formation is slightly reversible, thereby leading to a modest reappearance of adenylate intermediate; and (b) that phosphate is present to trap the intermediate (either as inorganic phosphate, as added ADP, or as ADP generated in situ from inorganic phosphate). Ap3A forms readily from Ap4A in the presence of such phosphate-based adenylate traps (via a 'reverse-trap' mechanism). LysU is also clearly demonstrated to exist in a phosphorylated state that is more physically robust as a catalyst of Ap4A formation than the nonphosphorylated state. However, phosphorylated LysU shows only marginally improved catalytic efficiency. We note that Ap3A effects have barely been studied in prokaryotic organisms. By contrast, there is a body of literature that describes Ap3A and Ap4A having substantially different functions in eukaryotic cells. Our data suggest that Ap3A and Ap4A biosynthesis could be linked together through a single prokaryotic dual 'synthase' enzyme. Therefore, in our view there is a need for new research into the effects and impact of Ap3A alone and the intracellular [Ap3A]/[Ap4A] ratio on prokaryotic organisms.


Subject(s)
Dinucleoside Phosphates/biosynthesis , Lysine-tRNA Ligase/metabolism , Blotting, Western , Catalysis , Chromatography, High Pressure Liquid , Chromatography, Ion Exchange , Electrophoresis, Polyacrylamide Gel , Escherichia coli/enzymology , Nuclear Magnetic Resonance, Biomolecular , Phosphorylation
2.
Mol Cell Biol ; 26(6): 2262-72, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16508002

ABSTRACT

The Ras-Raf-MEK-extracellular signal-regulated kinase (ERK) pathway participates in the control of many fundamental cellular processes including proliferation, survival, and differentiation. The pathway is deregulated in up to 30% of human cancers, often due to mutations in Ras and the B-Raf isoform. Raf-1 and B-Raf can form heterodimers, and this may be important for cellular transformation. Here, we have analyzed the biochemical and biological properties of Raf-1/B-Raf heterodimers. Isolated Raf-1/B-Raf heterodimers possessed a highly increased kinase activity compared to the respective homodimers or monomers. Heterodimers between wild-type Raf-1 and B-Raf mutants with low or no kinase activity still displayed elevated kinase activity, as did heterodimers between wild-type B-Raf and kinase-negative Raf-1. In contrast, heterodimers containing both kinase-negative Raf-1 and kinase-negative B-Raf were completely inactive, suggesting that the kinase activity of the heterodimer specifically originates from Raf and that either kinase-competent Raf isoform is sufficient to confer high catalytic activity to the heterodimer. In cell lines, Raf-1/B-Raf heterodimers were found at low levels. Heterodimerization was enhanced by 14-3-3 proteins and by mitogens independently of ERK. However, ERK-induced phosphorylation of B-Raf on T753 promoted the disassembly of Raf heterodimers, and the mutation of T753 prolonged growth factor-induced heterodimerization. The B-Raf T753A mutant enhanced differentiation of PC12 cells, which was previously shown to be dependent on sustained ERK signaling. Fine mapping of the interaction sites by peptide arrays suggested a complex mode of interaction involving multiple contact sites with a main Raf-1 binding site in B-Raf encompassing T753. In summary, our data suggest that Raf-1/B-Raf heterodimerization occurs as part of the physiological activation process and that the heterodimer has distinct biochemical properties that may be important for the regulation of some biological processes.


Subject(s)
Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins c-raf/metabolism , 14-3-3 Proteins/metabolism , Animals , Binding Sites , COS Cells , Cell Differentiation/drug effects , Cells, Cultured , Chlorocebus aethiops , Dimerization , Enzyme Inhibitors/pharmacology , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , MAP Kinase Kinase Kinases/antagonists & inhibitors , MAP Kinase Kinase Kinases/metabolism , Multiprotein Complexes , Mutation , Nerve Growth Factor/pharmacology , PC12 Cells/drug effects , Phosphorylation , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins c-raf/genetics , Rats
3.
FEBS Lett ; 556(1-3): 26-34, 2004 Jan 02.
Article in English | MEDLINE | ID: mdl-14706820

ABSTRACT

One key area of protein kinase research is the identification of cognate substrates. The search for substrates is hampered by problems in unambiguously assigning substrates to a particular kinase in vitro and in vivo. One solution to this impasse is to engineer the kinase of interest to accept an ATP analogue which is orthogonal (unable to fit into the ATP binding site) for the wild-type enzyme and the majority of other kinases. The acceptance of structurally modified, gamma-(32)P-labelled, nucleotide analogue by active site-modified kinase can provide a unique handle by which the direct substrates of any particular kinase can be displayed in crude mixtures or cell lysates. We have taken this approach with the serine/threonine kinase Raf-1, which plays an essential role in the transduction of stimuli through the Ras-->Raf-->MEK-->ERK/MAP kinase cascade. This cascade plays essential roles in proliferation, differentiation and apoptosis. Here we detail the mutagenesis strategy for the ATP binding pocket of Raf-1, such that it can utilise an N(6)-substituted ATP analogue. We show that these mutations do not alter the substrate specificity and signal transduction through Raf-1. We screen a library of analogues to identify which are orthogonal for Raf-1, and show that mutant Raf-1 can utilise the orthogonal analogue N(6)(2-phenethyl) ATP in vitro to phosphorylate its currently only accepted substrate MEK. Importantly we show that our approach can be used to tag putative direct substrates of Raf-1 kinase with (32)P-N(6)(2-phenethyl) ATP in cell lysates.


Subject(s)
Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/metabolism , Proto-Oncogene Proteins c-raf/genetics , Proto-Oncogene Proteins c-raf/metabolism , Amino Acid Sequence , Amino Acid Substitution , Animals , Binding Sites , COS Cells , Cell Line , Genes, Reporter/genetics , Luciferases/genetics , Luciferases/metabolism , Mitogen-Activated Protein Kinases/metabolism , Molecular Sequence Data , Phosphorylation , Precipitin Tests , Proto-Oncogene Proteins c-raf/antagonists & inhibitors , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Spodoptera , Substrate Specificity
4.
BMC Struct Biol ; 3: 5, 2003 Jun 04.
Article in English | MEDLINE | ID: mdl-12787471

ABSTRACT

BACKGROUND: Charging of transfer-RNA with cognate amino acid is accomplished by the aminoacyl-tRNA synthetases, and proceeds through an aminoacyl adenylate intermediate. The lysyl-tRNA synthetase has evolved an active site that specifically binds lysine and ATP. Previous molecular dynamics simulations of the heat-inducible Escherichia coli lysyl-tRNA synthetase, LysU, have revealed differences in the binding of ATP and aspects of asymmetry between the nominally equivalent active sites of this dimeric enzyme. The possibility that this asymmetry results in different binding affinities for the ligands is addressed here by a parallel computational and biochemical study. RESULTS: Biochemical experiments employing isothermal calorimetry, steady-state fluorescence and circular dichroism are used to determine the order and stoichiometries of the lysine and nucleotide binding events, and the associated thermodynamic parameters. An ordered mechanism of substrate addition is found, with lysine having to bind prior to the nucleotide in a magnesium dependent process. Two lysines are found to bind per dimer, and trigger a large conformational change. Subsequent nucleotide binding causes little structural rearrangement and crucially only occurs at a single catalytic site, in accord with the simulations. Molecular dynamics based free energy calculations of the ATP binding process are used to determine the binding affinities of each site. Significant differences in ATP binding affinities are observed, with only one active site capable of realizing the experimental binding free energy. Half-of-the-sites models in which the nucleotide is only present at one active site achieve their full binding potential irrespective of the subunit choice. This strongly suggests the involvement of an anti-cooperative mechanism. Pathways for relaying information between the two active sites are proposed. CONCLUSIONS: The asymmetry uncovered here appears to be a common feature of oligomeric aminoacyl-tRNA synthetases, and may play an important functional role. We suggest a manner in which catalytic efficiency could be improved by LysU operating in an alternating sites mechanism.


Subject(s)
Computer Simulation , Lysine-tRNA Ligase/chemistry , Models, Chemical , Thermodynamics , Adenosine Triphosphate/chemistry , Binding Sites/physiology , Calorimetry , Catalysis , Circular Dichroism , Dimerization , Escherichia coli/enzymology , Ligands , Lysine/chemistry , Protein Binding/physiology , Protein Conformation , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...