Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Biol ; 219(3)2020 03 02.
Article in English | MEDLINE | ID: mdl-32027339

ABSTRACT

Aurora B kinase is essential for faithful chromosome segregation during mitosis. During (pro)metaphase, Aurora B is concentrated at the inner centromere by the kinases Haspin and Bub1. However, how Haspin and Bub1 collaborate to control Aurora B activity at centromeres remains unclear. Here, we show that either Haspin or Bub1 activity is sufficient to recruit Aurora B to a distinct chromosomal locus. Moreover, we identified a small, Bub1 kinase-dependent Aurora B pool that supported faithful chromosome segregation in otherwise unchallenged cells. Joined inhibition of Haspin and Bub1 activities fully abolished Aurora B accumulation at centromeres. While this impaired the correction of erroneous KT-MT attachments, it did not compromise the mitotic checkpoint, nor the phosphorylation of the Aurora B kinetochore substrates Hec1, Dsn1, and Knl1. This suggests that Aurora B substrates at the kinetochore are not phosphorylated by centromere-localized pools of Aurora B, and calls for a reevaluation of the current spatial models for how tension affects Aurora B-dependent kinetochore phosphorylation.


Subject(s)
Aurora Kinase B/metabolism , Chromosome Segregation , Intracellular Signaling Peptides and Proteins/metabolism , Kinetochores/enzymology , Microtubules/enzymology , Mitosis , Protein Serine-Threonine Kinases/metabolism , Aurora Kinase B/genetics , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , HCT116 Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Kinesins/genetics , Kinesins/metabolism , M Phase Cell Cycle Checkpoints , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Microtubules/genetics , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Signal Transduction , Time Factors
2.
PLoS One ; 12(6): e0179514, 2017.
Article in English | MEDLINE | ID: mdl-28640891

ABSTRACT

The CRISPR/Cas9 system is a highly effective tool for genome editing. Key to robust genome editing is the efficient delivery of the CRISPR/Cas9 machinery. Viral delivery systems are efficient vehicles for the transduction of foreign genes but commonly used viral vectors suffer from a limited capacity in the genetic information they can carry. Baculovirus however is capable of carrying large exogenous DNA fragments. Here we investigate the use of baculoviral vectors as a delivery vehicle for CRISPR/Cas9 based genome-editing tools. We demonstrate transduction of a panel of cell lines with Cas9 and an sgRNA sequence, which results in efficient knockout of all four targeted subunits of the chromosomal passenger complex (CPC). We further show that introduction of a homology directed repair template into the same CRISPR/Cas9 baculovirus facilitates introduction of specific point mutations and endogenous gene tags. Tagging of the CPC recruitment factor Haspin with the fluorescent reporter YFP allowed us to study its native localization as well as recruitment to the cohesin subunit Pds5B.


Subject(s)
Baculoviridae/genetics , CRISPR-Cas Systems/genetics , Gene Editing/methods , Cell Line, Tumor , Gene Knockout Techniques , Genome, Human/genetics , Humans , Intracellular Signaling Peptides and Proteins/genetics , Point Mutation , Protein Serine-Threonine Kinases/genetics
3.
Front Cell Dev Biol ; 5: 112, 2017.
Article in English | MEDLINE | ID: mdl-29312936

ABSTRACT

Error-free chromosome segregation is essential for the maintenance of genomic integrity during cell division. Aurora B, the enzymatic subunit of the Chromosomal Passenger Complex (CPC), plays a crucial role in this process. In early mitosis Aurora B localizes predominantly to the inner centromere, a specialized region of chromatin that lies at the crossroads between the inter-kinetochore and inter-sister chromatid axes. Two evolutionarily conserved histone kinases, Haspin and Bub1, control the positioning of the CPC at the inner centromere and this location is thought to be crucial for the CPC to function. However, recent studies sketch a subtler picture, in which not all functions of the CPC require strict confinement to the inner centromere. In this review we discuss the molecular pathways that direct Aurora B to the inner centromere and deliberate if and why this specific localization is important for Aurora B function.

4.
Clin Cancer Res ; 22(21): 5238-5248, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27172896

ABSTRACT

PURPOSE: Despite the substantial progress in the development of targeted anticancer drugs, treatment failure due to primary or acquired resistance is still a major hurdle in the effective treatment of most advanced human cancers. Understanding these resistance mechanisms will be instrumental to improve personalized cancer treatment. EXPERIMENTAL DESIGN: Genome-wide loss-of-function genetic screens were performed to identify genes implicated in resistance to HER2/PI3K/mTOR targeting agents in HER2+ breast cancer cell lines. Expression and adjuvant trastuzumab response data from the HER2+ breast cancer trials FinHer and Responsify were used to validate our findings in patient series. RESULTS: We find that reduced ARID1A expression confers resistance to several drugs that inhibit the HER2/PI3K/mTOR signaling cascade at different levels. We demonstrate that ARID1A loss activates annexin A1 (ANXA1) expression, which is required for drug resistance through its activation of AKT. We find that the AKT inhibitor MK2206 restores sensitivity of ARID1A knockdown breast cancer cells to both the mTOR kinase inhibitor AZD8055 and trastuzumab. Consistent with these in vitro data, we find in two independent HER2+ breast cancer patient series that high ANXA1 expression is associated with resistance to adjuvant trastuzumab-based therapy. CONCLUSIONS: Our findings provide a rationale for why tumors accumulate ARID1A mutations and identify high ANXA1 expression as a predictive biomarker for trastuzumab-based treatment. Our findings also suggest strategies to treat breast cancers with elevated ANXA1 expression. Clin Cancer Res; 22(21); 5238-48. ©2016 AACR.


Subject(s)
Annexin A1/metabolism , Antineoplastic Agents, Immunological/pharmacology , Biomarkers, Tumor/metabolism , Breast Neoplasms/drug therapy , Drug Resistance, Neoplasm/drug effects , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Trastuzumab/pharmacology , Breast Neoplasms/metabolism , Cell Line, Tumor , DNA-Binding Proteins , Female , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , MCF-7 Cells , Morpholines/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Receptor, ErbB-2/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism
5.
Biochem Soc Trans ; 43(1): 23-32, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25619243

ABSTRACT

The evolutionary conserved chromosomal passenger complex (CPC) is essential for faithful transmission of the genome during cell division. Perturbation of this complex in cultured cells gives rise to chromosome segregation errors and cytokinesis failure and as a consequence the ploidy status of the next generation of cells is changed. Aneuploidy and chromosomal instability (CIN) is observed in many human cancers, but whether this may be caused by deregulation of the CPC is unknown. In the present review, we discuss if and how a dysfunctional CPC could contribute to CIN in cancer.


Subject(s)
Chromosomal Instability , Chromosome Segregation , Neoplasms/genetics , Animals , Aurora Kinase B/metabolism , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Cytokinesis , Humans , Inhibitor of Apoptosis Proteins/metabolism , Multiprotein Complexes/physiology , Neoplasms/metabolism , Neoplasms/pathology , Survivin
6.
Cancers (Basel) ; 4(4): 989-1035, 2012 Oct 12.
Article in English | MEDLINE | ID: mdl-24213498

ABSTRACT

Pancreatic cancer is a disease with remarkably poor patient survival rates. The frequent presence of metastases and profound chemoresistance pose a severe problem for the treatment of these tumors. Moreover, cross-talk between the tumor and the local micro-environment contributes to tumorigenicity, metastasis and chemoresistance. Compared to bulk tumor cells, cancer stem cells (CSC) have reduced sensitivity to chemotherapy. CSC are tumor cells with stem-like features that possess the ability to self-renew, but can also give rise to more differentiated progeny. CSC can be identified based on increased in vitro spheroid- or colony formation, enhanced in vivo tumor initiating potential, or expression of cell surface markers. Since CSC are thought to be required for the maintenance of a tumor cell population, these cells could possibly serve as a therapeutic target. There appears to be a causal relationship between CSC and epithelial-to-mesenchymal transition (EMT) in pancreatic tumors. The occurrence of EMT in pancreatic cancer cells is often accompanied by re-activation of developmental pathways, such as the Hedgehog, WNT, NOTCH, and Nodal/Activin pathways. Therapeutics based on CSC markers, EMT, developmental pathways, or tumor micro-environment could potentially be used to target pancreatic CSC. This may lead to a reduction of tumor growth, metastatic events, and chemoresistance in pancreatic cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...