ABSTRACT
This study assessed the roughness of two injection-molded, thermoplastic materials used for denture bases compared with a polyamide material and compression molded Polymethylmethacrylate (PMMA) after the adjustment and re-polishing with either a laboratory protocol or a chair side protocol. Methods: Forty specimens, each of PMMA, Valplast, DuraFlex, Dura Cetal were fabricated and finished according to individual manufactures' instructions. These materials were adjusted with tungsten carbide (TC) burs to mimic gross adjustments, and then re-polished either on a lathe or bonded silicon carbide (B-SC). Following instrumentation, the specimens were assessed using contact profilometry and scanning electron microscopy. Two-factor ANOVA was used to determine significant differences in mean surface roughness (Ra and Rmax), with included factors being material type and re-polishing regimen. Results: Mean Ra values ranged from 0.26 (DuraFlex control) to 1.82 (Valplast adjusted with TC burs). Mean Rmax values ranged from 1.88 (Dura Flex control) to 13.76 (Valplast adjusted with TC burs). Two-factor ANOVA revealed that interaction of both factors was significant (p < 0.05) for Ra and Rmax. There was a statistically significant increase in both Ra (p < 0.05) and Rmax (p < 0.05) for all material types following the gross adjustment. With the exception of DuraFlex, re-polishing of samples that were previously adjusted with TC burs, on the dental lathe produced surfaces that were comparable to control samples. Conclusion: Adjustment of DuraFlex should be kept to a minimum since the adjustment produced the significant surface detriment that could not be corrected with either of the polishing regimens.
Subject(s)
Humans , Trinidad and Tobago , Denture Bases , Resins , Caribbean RegionABSTRACT
We tested over 267,000 SNPs in 1,005 Northern Europeans and 248,000 in 1,006 Indian Asians for association with triglycerides and HDL cholesterol, with replication in 10,536 subjects. We found association of a nonsynonymous SNP (rs3812316, G771C, Gln241His) in MLXIPL with plasma triglyceride levels (combined P = 1.4 x 10(-10)). MLXIPL coordinates transcriptional regulation of enzymes that channel glycolytic end-products into lipogenesis and energy storage, making MLXIPL a plausible 'thrifty gene'.
Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Genetic Variation , Genome, Human , Triglycerides/blood , Triglycerides/genetics , Adult , Aged , Alleles , Asian People , Chromosomes, Human, Pair 7 , Cohort Studies , Europe , Female , Genetic Markers , Homozygote , Humans , India , Linear Models , Linkage Disequilibrium , Male , Metabolic Syndrome/genetics , Mexico , Middle Aged , Odds Ratio , Polymorphism, Single Nucleotide , Principal Component Analysis , White PeopleABSTRACT
For admixture mapping studies in Mexican Americans (MAM), we define a genomewide single-nucleotide-polymorphism (SNP) panel that can distinguish between chromosomal segments of Amerindian (AMI) or European (EUR) ancestry. These studies used genotypes for >400,000 SNPs, defined in EUR and both Pima and Mayan AMI, to define a set of ancestry-informative markers (AIMs). The use of two AMI populations was necessary to remove a subset of SNPs that distinguished genotypes of only one AMI subgroup from EUR genotypes. The AIMs set contained 8,144 SNPs separated by a minimum of 50 kb with only three intermarker intervals >1 Mb and had EUR/AMI FST values >0.30 (mean FST = 0.48) and Mayan/Pima FST values <0.05 (mean FST < 0.01). Analysis of a subset of these SNP AIMs suggested that this panel may also distinguish ancestry between EUR and other disparate AMI groups, including Quechuan from South America. We show, using realistic simulation parameters that are based on our analyses of MAM genotyping results, that this panel of SNP AIMs provides good power for detecting disease-associated chromosomal segments for genes with modest ethnicity risk ratios. A reduced set of 5,287 SNP AIMs captured almost the same admixture mapping information, but smaller SNP sets showed substantial drop-off in admixture mapping information and power. The results will enable studies of type 2 diabetes, rheumatoid arthritis, and other diseases among which epidemiological studies suggest differences in the distribution of ancestry-associated susceptibility.