Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
J Occup Environ Hyg ; 8(1): 1-9, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21132594

ABSTRACT

In late 2001, some U.S. Postal Service workers and a few members of Congress were exposed to anthrax spores. This led to an increased effort to develop employable methods to protect workers from exposure to anthrax. Some investigations focused on selection and use of respirators to protect workers against airborne anthrax. The present study evaluated the potential for several types of half-mask respirators to release deposited particles. Four brands of the most commonly used filtering facepiece respirators (hereafter termed masks) were loaded with 0.59-µm, 1.0-µm, and 1.9-µm polystyrene latex (PSL) microspheres (nominally 0.6, 1.0, and 2.0 µm) and then dropped onto a rigid surface. The load conditions were 10, 20, or 40 million particles, and drop heights were 0.15, 0.76, and 1.37 m. For the average conditions of 0.76 m, 1.15 µm size and 22 million particles loaded, the average particle release was 0.604 particles per 10,000 (95% CI: .552, .662) particles loaded for all of the filtering facepieces tested. The averaging of conditions is a useful tool to provide generalized information and is also useful when making risk estimates. For most filtering facepiece respirators, particle release tended to increase with drop height and particle size, and there appeared to be a slight inverse relationship with particle load. Two brands of reusable elastomeric half-mask respirators with P100 high-efficiency particulate air (HEPA) filter cartridges were also evaluated. Results of these tests were inconclusive. Part II in this issue addresses the release of particles when simulating removal of a filtering facepiece from a wearer's head.


Subject(s)
Air Pollutants/analysis , Occupational Exposure/prevention & control , Particulate Matter/analysis , Respiratory Protective Devices , Air Pollutants/chemistry , Equipment Safety , Occupational Exposure/analysis , Particle Size , Particulate Matter/chemistry
2.
J Occup Environ Hyg ; 8(1): 10-2, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21154102

ABSTRACT

This study evaluated the potential for disposable filtering facepiece respirators (hereafter termed masks) contaminated with 1-µ m particles to release particles as a result of lateral tension applied to the mask. The lateral tension was designed to simulate the removal of a contaminated mask from a user's head. Four brands of filtering facepieces were loaded with approximately 20 million 1.0-µ m polystyrene latex (PSL) microspheres. The respirators were then placed in a test chamber and subjected to lateral tension between 17.8-26.7 N (4-6 lbs) for 1 to 2 sec. The findings suggest that neither mask type nor loading condition affects particle release. This supports our hypothesis that when filtering facepiece respirators are properly removed from the head they will not release a significant number of particles.


Subject(s)
Air Pollutants, Occupational/analysis , Particulate Matter/analysis , Respiratory Protective Devices , Air Pollutants, Occupational/chemistry , Occupational Exposure/analysis , Occupational Exposure/prevention & control , Particle Size , Particulate Matter/chemistry
3.
J Air Waste Manag Assoc ; 58(3): 424-34, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18376645

ABSTRACT

A mobile exposure and air pollution measurement system was developed and used for on-freeway ultrafine particle health effects studies. A nine-passenger van was modified with a high-efficiency particulate air (HEPA) filtration system that can deliver filtered or unfiltered air to an exposure chamber inside the van. State-of-the-art instruments were used to measure concentration and size distribution of fine and ultrafine particles and the concentration of carbon monoxide (CO), black carbon (BC), particle-bound polycyclic aromatic hydrocarbons (PAHs), fine particulate matter (PM2.5) mass, and oxides of nitrogen (NOx) inside the exposure chamber. This paper presents the construction and technical details of the van and air pollutant concentrations collected in 32 2-hr runs on two major Los Angeles freeways, Interstate 405 (1-405; mostly gasoline traffic) and Interstate 710 (1-710; large proportion of heavy-duty diesel traffic). More than 97% of particles were removed when the flow through the filter box was switched from bypass mode to filter mode while the vehicle was driving on both freeways. The filtration system thus provides a great particulate matter exposure contrast while keeping gas-phase pollutant concentrations the same. Under bypass mode, average total particle number concentration observed inside the exposure chamber was around 8.4 x 10(4) and 1.3 x 10(5) particles cm(-3) on the I-405 and the I-710 freeways, respectively. Bimodal size distributions were consistent and similar for both freeways with the first mode around 16-20 nm and the second mode around 50-55 nm. BC and particle-bound PAH concentrations were more than two times greater on the I-710 than on the I-405 freeway. Very weak correlations were observed between total particle number concentrations and other vehicular pollutants on the freeways.


Subject(s)
Air Pollutants/analysis , Particulate Matter/analysis , Vehicle Emissions/analysis , Los Angeles , Particle Size
4.
Environ Sci Technol ; 41(7): 2138-45, 2007 Apr 01.
Article in English | MEDLINE | ID: mdl-17438754

ABSTRACT

Worldwide people are exposed to toxic ultrafine particles (UFP, with diameters (dp) less than 100 nm) and nanoparticles (NP, dp < 50 nm) under a variety of circumstances. To date, very limited information is available on human exposure to freshly emitted UFP and NP while traveling on major roads and freeways. We report in-cabin and outdoor measurements of particle number concentration and size distributions while driving three vehicles on Los Angeles freeways. Particle number concentrations and size distributions were measured under different vehicle ventilation settings. When the circulation fan was set to on, with substantial external air intake, outside changes in particle counts caused corresponding in-cabin changes approximately 30-60 s later, indicating an maximal air exchange rate of about 120-60 h(-1). Maximum in-cabin protection (approximately 85%) was obtained when both fan and recirculation were on. In-cabin and outdoor particle size distributions in the 7.9-217 nm range were observed to be mostly bimodal, with the primary peak occurring at 10-30 nm and the secondary at 50-70 nm. The vehicle's manufacture-installed particle filter offered an in-cabin protection of about 50% for particles in the 7-40 nm size range and 20-30% for particles in the 40 to approximately 200 nm size range. For an hour daily commute exposure, the in-vehicle microenvironment contributes approximately 10-50% of people's daily exposure to UFP from traffic.


Subject(s)
Air Pollution/statistics & numerical data , Environmental Exposure/statistics & numerical data , Transportation , Air Pollution/analysis , Carbon Dioxide/analysis , Carbon Monoxide/analysis , Humans , Los Angeles , Particle Size , Time Factors , Ventilation
5.
Environ Sci Technol ; 40(8): 2531-6, 2006 Apr 15.
Article in English | MEDLINE | ID: mdl-16683588

ABSTRACT

Previously we have conducted systematic measurements of the concentration and size distribution of ultrafine particles in the vicinity of major highways during daytime in Los Angeles. The present study compares these with similar measurements made at night. Particle number concentration was measured by a condensation particle counter (CPC) and size distributions in the size range from 7 to 300 nm were measured by a scanning mobility particle sizer (SMPS). Measurements were taken at 30, 60, 90, 150, and 300 m upwind and downwind from the center of the 1-405 freeway. Average traffic flow at night was about 25% of that observed during the day. Particle number concentration measured at 30 m downwind from the freeway was 80% of previous daytime measurements. This discrepancy between changes in traffic counts and particle number concentrations is apparently due to the decreased temperature, increased relative humidity, and lower wind speed at night. Particle size distributions do not change as dramatically as they did during the daytime. Particle number concentration decays exponentially downwind from the freeway similarly to what was observed during the day, but at a slower rate. No particle number concentration gradient has been observed for the upwind side of the freeway. No PM2.5 and very weak PM10 concentration gradients were observed downwind of thefreeway at night. Ultrafine particle number concentration measured at 300 m downwind from the freeway was still distinguishably higher than upwind background concentration at night. These data may be used to help estimate exposure to ultrafine particles in the vicinity of major highways for epidemiology studies.


Subject(s)
Air Pollutants/analysis , Dust/analysis , Vehicle Emissions/analysis , Environmental Monitoring , Humidity , Los Angeles , Particle Size , Seasons , Temperature , Wind
6.
Ann Occup Hyg ; 49(1): 47-59, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15591325

ABSTRACT

Spray painters are potentially exposed to aerosol containing Cr(VI) via inhalation of chromate-based paint spray. Two field studies were conducted at an aerospace facility to determine the size distribution and speciation of Cr(VI) in paint spray aerosol. Sampled paint products consisted of sparingly soluble strontium chromate in an epoxy resin matrix, a matrix generally known for its durability and toughness. Personal aerosol samples were collected using Sierra Marple personal cascade impactors and analyzed for Cr(VI) and total Cr. The size distribution of total Cr particles in the paint aerosol had a Mass Median Aerodynamic Diameter (MMAD) of 7.5 mum [Geometric Standard Deviation (GSD = 2.7 mum)] in both field studies. The MMAD of Cr(VI) particles was 8.5 mum (GSD = 2.2 mum). Particles >2 mum constituted 90% or more of the total Cr and the Cr(VI) mass, in all sampled paint aerosols and were lognormally distributed. The target site for respiratory deposition of Cr in the aerosol was estimated based on the mass distribution of Cr according to particle size. On an average, 62% of the Cr and Cr(VI) mass in the paint aerosol consisted of particles >10 mum. This study showed that 71.8% of Cr(VI) mass in paint spray aerosol potentially inhaled by a spray painter may deposit in the head airways region. Only 2.0 and 1.4% of Cr(VI) mass in the paint aerosol may potentially deposit in the alveolar and tracheobronchial region, respectively. The ratio of Cr(VI) mass to total Cr mass was determined in bulk paint and the data indicate that Cr was predominantly in the Cr(VI) valence state, before spraying. The ratio of Cr(VI) mass to total Cr mass was also determined in paint aerosol samples. The data indicated that there was a reduction of Cr(VI) regardless of Cr aerosol particle size. Cr(VI) reduction occurred most likely during the 8 h sample collection time period. These findings are in agreement with the findings that observed Cr(VI) reduction during collection of airborne Cr(VI) in samples of chromic acid mist. The use of Cr(VI) stabilizing sampling media and the storage of samples at lower temperatures (4 degrees C ) during and after sampling may avoid the underestimation of Cr(VI).


Subject(s)
Aerosols/toxicity , Chromium/toxicity , Occupational Exposure/adverse effects , Paint/toxicity , Aerosols/pharmacokinetics , Air Pollutants, Occupational/toxicity , Aircraft , Carcinogens, Environmental/pharmacokinetics , Carcinogens, Environmental/toxicity , Chromium/pharmacokinetics , Humans , Particle Size , Pressure , Respiratory System/metabolism
7.
Ann Occup Hyg ; 49(1): 33-45, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15596421

ABSTRACT

Spray painters are potentially exposed to aerosols containing hexavalent chromium [Cr(VI)] via inhalation of chromate-based paint sprays. Evaluating the particle size distribution of a paint spray aerosol, and the variables that may affect this distribution, is necessary to determine the site and degree of respiratory deposition and the damage that may result from inhaled Cr(VI)-containing paint particles. This study examined the effect of spray gun atomization pressure, aerosol generation source and aerosol aging on the size distribution of chromate-based paint overspray aerosols generated in a bench-scale paint spray booth. The study also determined the effect of particle bounce inside a Marple personal cascade impactor on measured size distributions of paint spray aerosols. Marple personal cascade impactors with a modified inlet were used for sample collection. The data indicated that paint particle bounce did not occur inside the cascade impactors sufficiently to affect size distribution when using uncoated stainless steel or PVC substrate sampling media. A decrease in paint aerosol mass median aerodynamic diameter (MMAD) from 8.2 to 7.0 mum was observed as gun atomization pressure increased from 6 to 10 psi. Overspray aerosols were sampled at two locations in the spray booth. A downstream sampling position simulated the exposure of a worker standing between the painted surface and exhaust, a situation encountered in booths with multiple workers. The measured mean MMAD was 7.2 mum. The distance between the painted surface and sampler was varied to sample oversprays of varying ages between 2.8 and 7.7 s. Age was not a significant factor for determining MMAD. Overspray was sampled at a 90 degrees position to simulate a worker standing in front of the surface being painted with air flowing to the worker's side, a common situation in field applications. The resulting overspray MMAD averaged 5.9 mum. Direct-spray aerosols were sampled at ages from 5.3 to 11.7 s. Overspray and direct-spray results indicated that most of the change in aerosol size distribution occurred between the time the paint aerosol impacted the painted surface and the time the overspray became 2.8 s old. The overall mean MMAD of overspray in the study was 6.4 mum and may have been underestimated due to sampling efficiency biases. If inhaled by a worker, the overspray aerosols evaluated in this study would mostly deposit in the head airways region of the respiratory tract. Paint overspray aerosols contained Cr primarily in the Cr(VI) state.


Subject(s)
Aerosols/toxicity , Chromates/toxicity , Occupational Exposure/adverse effects , Paint/toxicity , Aerosols/pharmacokinetics , Air Pollutants, Occupational/toxicity , Chromates/pharmacokinetics , Equipment Design , Humans , Lung/metabolism , Particle Size , Pressure , Risk Assessment/methods , Time Factors
8.
J Occup Environ Hyg ; 1(1): 7-10, 2004 Jan.
Article in English | MEDLINE | ID: mdl-15202151

ABSTRACT

A preliminary study was undertaken to evaluate the potential for a disposable respirator that has been contaminated with anthrax spores to release spores in handling after use. The release of inert particles from disposable respirators was measured for masks dropped 3 feet onto a hard surface. Ten experimental runs were conducted for each of two N95 mask types, the Moldex 2200N95 and the 3M 8210. Anthrax spores were simulated with a test aerosol of single and double 1-micron polystyrene spheres. For the Moldex mask loaded with approximately 20 million spheres on it, an average of 0.16% was released; for the 3M mask an average of 0.29% was released.


Subject(s)
Anthrax , Models, Theoretical , Respiratory Protective Devices/microbiology , Aerosols , Disposable Equipment , Particle Size , Refuse Disposal , Risk Assessment , Spores
9.
Clin Immunol ; 109(3): 250-65, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14697739

ABSTRACT

Asthma is a chronic inflammatory disease, which involves a variety of different mediators, including reactive oxygen species. There is growing awareness that particulate pollutants act as adjuvants during allergic sensitization and can also induce acute asthma exacerbations. In this communication we review the role of oxidative stress in asthma, with an emphasis on the pro-oxidative effects of diesel exhaust particles and their chemicals in the respiratory tract. We review the biology of oxidative stress, including protective and injurious effects that explain the impact of particulate matter-induced oxidative stress in asthma.


Subject(s)
Air Pollutants/adverse effects , Asthma/immunology , Oxidative Stress/immunology , Asthma/etiology , Humans , Particle Size , Polycyclic Aromatic Hydrocarbons/immunology , Reactive Oxygen Species/immunology , Vehicle Emissions/adverse effects
10.
J Air Waste Manag Assoc ; 52(9): 1032-42, 2002 Sep.
Article in English | MEDLINE | ID: mdl-12269664

ABSTRACT

Motor vehicle emissions usually constitute the most significant source of ultrafine particles (diameter <0.1 microm) in an urban environment, yet little is known about the concentration and size distribution of ultrafine particles in the vicinity of major highways. In the present study, particle number concentration and size distribution in the size range from 6 to 220 nm were measured by a condensation particle counter (CPC) and a scanning mobility particle sizer (SMPS), respectively. Measurements were taken 30, 60, 90, 150, and 300 m downwind, and 300 m upwind, from Interstate 405 at the Los Angeles National Cemetery. At each sampling location, concentrations of CO, black carbon (BC), and particle mass were also measured by a Dasibi CO monitor, an aethalometer, and a DataRam, respectively. The range of average concentration of CO, BC, total particle number, and mass concentration at 30 m was 1.7-2.2 ppm, 3.4-10.0 microg/m3, 1.3-2.0 x 10(5)/cm3, and 30.2-64.6 microg/m3, respectively. For the conditions of these measurements, relative concentrations of CO, BC, and particle number tracked each other well as distance from the freeway increased. Particle number concentration (6-220 nm) decreased exponentially with downwind distance from the freeway. Data showed that both atmospheric dispersion and coagulation contributed to the rapid decrease in particle number concentration and change in particle size distribution with increasing distance from the freeway. Average traffic flow during the sampling periods was 13,900 vehicles/hr. Ninety-three percent of vehicles were gasoline-powered cars or light trucks. The measured number concentration tracked traffic flow well. Thirty meters downwind from the freeway, three distinct ultrafine modes were observed with geometric mean diameters of 13, 27, and 65 nm. The smallest mode, with a peak concentration of 1.6 x 10(5)/cm3, disappeared at distances greater than 90 m from the freeway. Ultrafine particle number concentration measured 300 m downwind from the freeway was indistinguishable from upwind background concentration. These data may be used to estimate exposure to ultrafine particles in the vicinity of major highways.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Vehicle Emissions/analysis , Air Movements , Humans , Particle Size , Public Health , Transportation
SELECTION OF CITATIONS
SEARCH DETAIL