Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 32(2): 504-517, 2023 01.
Article in English | MEDLINE | ID: mdl-36318600

ABSTRACT

Anthropogenic changes to land use drive concomitant changes in biodiversity, including that of the soil microbiota. However, it is not clear how increasing intensity of human disturbance is reflected in the soil microbial communities. To address this issue, we used amplicon sequencing to quantify the microbiota (bacteria and fungi) in the soil of forests (n = 312) experiencing four different land uses, national parks (set aside for nature conservation), managed (for forestry purposes), suburban (on the border of an urban area) and urban (fully within a town or city), which broadly represent a gradient of anthropogenic disturbance. Alpha diversity of bacteria and fungi increased with increasing levels of anthropogenic disturbance, and was thus highest in urban forest soils and lowest in the national parks. The forest soil microbial communities were structured according to the level of anthropogenic disturbance, with a clear urban signature evident in both bacteria and fungi. Despite notable differences in community composition, there was little change in the predicted functional traits of urban bacteria. By contrast, urban soils exhibited a marked loss of ectomycorrhizal fungi. Soil pH was positively correlated with the level of disturbance, and thus was the strongest predictor of variation in alpha and beta diversity of forest soil communities, indicating a role of soil alkalinity in structuring urban soil microbial communities. Hence, our study shows how the properties of urban forest soils promote an increase in microbial diversity and a change in forest soil microbiota composition.


Subject(s)
Mycorrhizae , Soil , Humans , Soil/chemistry , Forests , Fungi/genetics , Bacteria/genetics , Biodiversity , Soil Microbiology
2.
Mol Ecol ; 30(14): 3485-3499, 2021 07.
Article in English | MEDLINE | ID: mdl-33955637

ABSTRACT

Species identity is thought to dominate over environment in shaping wild rodent gut microbiota, but it remains unknown whether the responses of host gut microbiota to shared anthropogenic habitat impacts are species-specific or if the general gut microbiota response is similar across host species. Here, we compare the influence of exposure to radionuclide contamination on the gut microbiota of four wild mouse species: Apodemus flavicollis, A. sylvaticus, A. speciosus and A. argenteus. Building on the evidence that radiation impacts bank vole (Myodes glareolus) gut microbiota, we hypothesized that radiation exposure has a general impact on rodent gut microbiota. Because we sampled (n = 288) two species pairs of Apodemus mice that occur in sympatry in habitats affected by the Chernobyl and Fukushima nuclear accidents, these comparisons provide an opportunity for a general assessment of the effects of exposure to environmental contamination (radionuclides) on gut microbiota across host phylogeny and geographical areas. In general agreement with our hypothesis, analyses of bacterial 16S rRNA gene sequences revealed that radiation exposure alters the gut microbiota composition and structure in three of the four species of Apodemus mice. The notable lack of an association between the gut microbiota and soil radionuclide contamination in one mouse species from Fukushima (A. argenteus) probably reflects host "radiation escape" through its unique tree-dwelling lifestyle. The finding that host ecology can modulate effects of radiation exposure offers an interesting counterpoint for future analyses into effects of radiation or any other toxic exposure on host and its associated microbiota. Our data show that exposure to radionuclide contamination is linked to comparable gut microbiota responses across multiple species of rodents.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Arvicolinae , Mice , Murinae , RNA, Ribosomal, 16S/genetics
3.
Immunohorizons ; 5(4): 170-181, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33893180

ABSTRACT

IgA is the most abundant Ab in the human body. However, most patients with selective IgA deficiency (SIgAD) are asymptomatic. IgM, and to lesser extent IgG Abs, are generally presumed to compensate for the lack of IgA in SIgAD by multiplying and adopting functions of IgA. We used data from the Northern Finland Birth Cohort 1966 to investigate whether SIgAD patients have differences in levels of natural Abs to oxidized epitopes compared with 20 randomly selected healthy controls. First, we screened the saliva and serum samples from the Northern Finland Birth Cohort 1966 cohort (n = 1610) for IgA concentration. We detected five IgA-deficient subjects, yielding a prevalence of 0.3%, which is consistent with the general prevalence of 0.25% in the Finnish population. To detect natural Abs, we used malondialdehyde acetaldehyde-low-density lipoprotein (MAA-LDL), an Ag known to bind natural Abs. In this study, we show that natural secretory IgM and IgG Abs to MAA-DL were significantly increased in subjects with SIgAD. Given that secretory IgA is an important part of mucosal immune defense and that, in the gut microbiota, dysbiosis with SIgAD patients has been observed, we characterized the oral bacterial microbiota of the subjects with and without SIgAD using high-throughput 16S rRNA gene sequencing. We found no significant alterations in diversity and composition of the oral microbiota in subjects with SIgAD. Our data suggest that increased levels of secretory natural Abs in patients with SIgAD could be a compensatory mechanism, providing alternative first-line defense against infections and adjusting mucosal milieu to maintain a healthy oral microbiota.


Subject(s)
Gastrointestinal Microbiome/immunology , IgA Deficiency/immunology , Immunoglobulin A/immunology , Immunoglobulin M/immunology , Bacteria/genetics , Birth Cohort , Case-Control Studies , Female , Finland , Humans , Immunoglobulin G/immunology , Lipoproteins, LDL/immunology , Male , Malondialdehyde/immunology , Middle Aged , RNA, Ribosomal, 16S/genetics , Saliva/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...