Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Soft Matter ; 20(15): 3349-3358, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38563221

ABSTRACT

Slide electrification of drops is mostly investigated on tilted plate setups. Hence, the drop charging at low sliding velocity remains unclear. We overcome the limitations by developing an electro drop friction force instrument (eDoFFI). Using eDoFFI, we investigate slide electrification at the onset of drop sliding and at low sliding velocities ≤ 1 cm s-1. The novelty of eDoFFI is the simultaneous measurements of the drop discharging current and the friction force acting on the drop. The eDoFFI tool facilitates control on drop length and width using differently shaped rings. Hereby, slide electrification experiments with the defined drop length-to-width ratios >1 and <1 are realized. We find that width of the drop is the main geometrical parameter which determines drop discharging current and charge separation. We combine Kawasaki-Furmidge friction force equation with our finding on drop discharging current. This combination facilitates the direct measurement of surface charge density (σ) deposited behind the drop. We calculate σ ≈ 45 µC m-2 on Trichloro(1H,1H,2H,2H-perfluorooctyl)silane (PFOTS) and ≈20 µC m-2 on Trichloro(octyl)silane (OTS) coated glass surfaces. We find that the charge separation by moving drops is independent of sliding velocity ≤ 1 cm s-1. The reverse sliding of drop along the same scanline facilitates calculation of the surface neutralization time constant. The eDoFFI links two scientific communities: one which focuses on the friction forces and one which focuses on the slide electrification of drops.

2.
Nanoscale Adv ; 5(22): 6123-6134, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37941961

ABSTRACT

The wettabilities of nanoscale porous surfaces play important roles in the context of molecular and fluid transport or oil-water separation. The wettability pattern along a nanopore strongly influences fluid distribution throughout the membrane. Mesoporous silica thin films with gradually adjusted wettabilities were fabricated via cocondensation. With consecutive mesoporous layer depositions, double-layer mesoporous silica films with asymmetric or so-called Janus wettability patterns were generated. The effects of these wetting gradients on mass transport, water imbibition, and water vapor condensation were investigated with ellipsometry, cyclic voltammetry (CV), drop friction force instrument (DoFFIs), fluorescence microscopy and interferometry. By increasing the film thickness of the hydrophobic mesoporous silica top layer deposited on a hydrophilic mesoporous silica layer up to 205 nm, molecular transport through both the layers was prevented. However, water was observed to condense onto the bottom layer, and transport occurred for thinner top layers.

3.
Nano Lett ; 23(8): 3116-3121, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37039578

ABSTRACT

Methods for fabricating super-liquid-repellent surfaces have typically relied on perfluoroalkyl substances. However, growing concerns about the environmental and health effects of perfluorinated compounds have caused increased interest in fluorine-free alternatives. Polydimethylsiloxane (PDMS) is most promising. In contrast to fluorinated surfaces, PDMS-coated surfaces showed only superhydrophobicity. This raises the question whether the poor liquid repellency is caused by PDMS interacting with the probe liquid or whether it results from inappropriate surface morphology. Here, we demonstrate that a well-designed two-tier structure consisting of silicon dioxide nanoparticles combined with surface-tethered PDMS chains allows super-liquid-repellency toward a range of low surface tension liquids. Drops of water-ethanol solutions with surface tensions as low as 31.0 mN m-1 easily roll and bounce off optimized surface structures. Friction force measurements demonstrate excellent surface homogeneity and easy mobility of drops. Our work shows that fluorine-free super-liquid-repellent surfaces can be achieved using scalable fabrication methods and environmentally friendly surface functionalization.

4.
Langmuir ; 2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36634270

ABSTRACT

State-of-the-art contact angle measurements usually involve image analysis of sessile drops. The drops are symmetric and images can be taken at high resolution. The analysis of videos of drops sliding down a tilted plate is hampered due to the low resolution of the cutout area where the drop is visible. The challenge is to analyze all video images automatically, while the drops are not symmetric anymore and contact angles change while sliding down the tilted plate. To increase the accuracy of contact angles, we present a 4-segment super-resolution optimized-fitting (4S-SROF) method. We developed a deep learning-based super-resolution model with an upscale ratio of 3; i.e., the trained model is able to enlarge drop images 9 times accurately (PSNR = 36.39). In addition, a systematic experiment using synthetic images was conducted to determine the best parameters for polynomial fitting of contact angles. Our method improved the accuracy by 21% for contact angles lower than 90° and by 33% for contact angles higher than 90°.

5.
Langmuir ; 38(48): 14635-14643, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36399702

ABSTRACT

Wetting imperfections are omnipresent on surfaces. They cause contact angle hysteresis and determine the wetting dynamics. Still, existing techniques (e.g., contact angle goniometry) are not sufficient to localize inhomogeneities and image wetting variations. We overcome these limitations through scanning drop friction force microscopy (sDoFFI). In sDoFFI, a 15 µL drop of Milli-Q water is raster-scanned over a surface. The friction force (lateral adhesion force) acting on the moving contact line is plotted against the drop position. Using sDoFFI, we obtained 2D wetting maps of the samples having sizes in the order of several square centimeters. We mapped areas with distinct wetting properties such as those present on a natural surface (e.g., a rose petal), a technically relevant superhydrophobic surface (e.g., Glaco paint), and an in-house prepared model of inhomogeneous surfaces featuring defined areas with low and high contact angle hysteresis. sDoFFI detects features that are smaller than 0.5 mm in size. Furthermore, we quantified the sliding behavior of drops across the boundary separating areas with different contact angles on the model sample. The sliding of a drop across this transition line follows a characteristic stick-slip motion. We use the variation in force signals, advancing and receding contact line velocities, and advancing and receding contact angles to identify zones of stick and slip. When scanning the drop from low to high contact angle hysteresis, the drop undergoes a stick-slip-stick-slip motion at the interline. Sliding from high to low contact angle hysteresis is characterized by the slip-stick-slip motion. The sDoFFI is a new tool for 2D characterization of wetting properties, which is applicable to laboratory-based samples but also characterizes biological and commercial surfaces.

SELECTION OF CITATIONS
SEARCH DETAIL
...