Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 10(1): 5755, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31848340

ABSTRACT

Autophagy perturbation represents an emerging therapeutic strategy in cancer. Although LATS1 and LATS2 kinases, core components of the mammalian Hippo pathway, have been shown to exert tumor suppressive activities, here we report a pro-survival role of LATS1 but not LATS2 in hepatocellular carcinoma (HCC) cells. Specifically, LATS1 restricts lethal autophagy in HCC cells induced by sorafenib, the standard of care for advanced HCC patients. Notably, autophagy regulation by LATS1 is independent of its kinase activity. Instead, LATS1 stabilizes the autophagy core-machinery component Beclin-1 by promoting K27-linked ubiquitination at lysine residues K32 and K263 on Beclin-1. Consequently, ubiquitination of Beclin-1 negatively regulates autophagy by promoting inactive dimer formation of Beclin-1. Our study highlights a functional diversity between LATS1 and LATS2, and uncovers a scaffolding role of LATS1 in mediating a cross-talk between the Hippo signaling pathway and autophagy.


Subject(s)
Autophagy/immunology , Carcinoma, Hepatocellular/pathology , Cell Survival/immunology , Liver Neoplasms/pathology , Protein Serine-Threonine Kinases/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Autophagy/drug effects , Beclin-1/metabolism , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/mortality , Cell Line, Tumor , Cell Proliferation , Cell Survival/drug effects , Datasets as Topic , Disease-Free Survival , Drug Resistance, Neoplasm/immunology , Hippo Signaling Pathway , Humans , Kaplan-Meier Estimate , Liver/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/immunology , Liver Neoplasms/mortality , Lysine/metabolism , Mice , Mice, Knockout , Organoids , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/immunology , Protein Stability , Signal Transduction/drug effects , Signal Transduction/immunology , Sorafenib/pharmacology , Sorafenib/therapeutic use , Tumor Suppressor Proteins/immunology , Ubiquitination , Xenograft Model Antitumor Assays
2.
Cell Rep ; 25(11): 3047-3058.e4, 2018 12 11.
Article in English | MEDLINE | ID: mdl-30540938

ABSTRACT

Highly glycolytic cancer cells prevent intracellular acidification by excreting the glycolytic end-products lactate and H+ via the monocarboxylate transporters 1 (MCT1) and 4 (MCT4). We report that syrosingopine, an anti-hypertensive drug, is a dual MCT1 and MCT4 inhibitor (with 60-fold higher potency on MCT4) that prevents lactate and H+ efflux. Syrosingopine elicits synthetic lethality with metformin, an inhibitor of mitochondrial NADH dehydrogenase. NAD+, required for the ATP-generating steps of glycolysis, is regenerated from NADH by mitochondrial NADH dehydrogenase or lactate dehydrogenase. Syrosingopine treatment leads to high intracellular lactate levels and thereby end-product inhibition of lactate dehydrogenase. The loss of NAD+ regeneration capacity due to combined metformin and syrosingopine treatment results in glycolytic blockade, leading to ATP depletion and cell death. Accordingly, ATP levels can be partly restored by exogenously provided NAD+, the NAD precursor nicotinamide mononucleotide (NMN), or vitamin K2. Thus, pharmacological inhibition of MCT1 and MCT4 combined with metformin treatment is a potential cancer therapy.


Subject(s)
Lactic Acid/metabolism , Metformin/pharmacology , Monocarboxylic Acid Transporters/antagonists & inhibitors , Muscle Proteins/antagonists & inhibitors , NAD/metabolism , Neoplasms/metabolism , Symporters/antagonists & inhibitors , Synthetic Lethal Mutations , Acids/metabolism , Animals , Cell Line, Tumor , Energy Metabolism/drug effects , Humans , Intracellular Space/metabolism , Male , Mice, Inbred C57BL , Monocarboxylic Acid Transporters/metabolism , Muscle Proteins/metabolism , Reserpine/analogs & derivatives , Reserpine/pharmacology , Symporters/metabolism
3.
Nature ; 555(7698): 678-682, 2018 03 29.
Article in English | MEDLINE | ID: mdl-29562234

ABSTRACT

Histidine phosphorylation, the so-called hidden phosphoproteome, is a poorly characterized post-translational modification of proteins. Here we describe a role of histidine phosphorylation in tumorigenesis. Proteomic analysis of 12 tumours from an mTOR-driven hepatocellular carcinoma mouse model revealed that NME1 and NME2, the only known mammalian histidine kinases, were upregulated. Conversely, expression of the putative histidine phosphatase LHPP was downregulated specifically in the tumours. We demonstrate that LHPP is indeed a protein histidine phosphatase. Consistent with these observations, global histidine phosphorylation was significantly upregulated in the liver tumours. Sustained, hepatic expression of LHPP in the hepatocellular carcinoma mouse model reduced tumour burden and prevented the loss of liver function. Finally, in patients with hepatocellular carcinoma, low expression of LHPP correlated with increased tumour severity and reduced overall survival. Thus, LHPP is a protein histidine phosphatase and tumour suppressor, suggesting that deregulated histidine phosphorylation is oncogenic.


Subject(s)
Histidine/metabolism , Inorganic Pyrophosphatase/metabolism , Liver Neoplasms/enzymology , Liver Neoplasms/pathology , Tumor Suppressor Proteins/metabolism , Animals , Carcinoma, Hepatocellular/enzymology , Carcinoma, Hepatocellular/pathology , Disease Models, Animal , Humans , Inorganic Pyrophosphatase/deficiency , Inorganic Pyrophosphatase/genetics , Male , Mice , Phosphorylation , Proteomics , Survival Analysis , TOR Serine-Threonine Kinases/metabolism , Tumor Burden , Tumor Suppressor Proteins/deficiency , Tumor Suppressor Proteins/genetics
4.
Cancer Res ; 78(6): 1497-1510, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29339542

ABSTRACT

Cell detachment from the extracellular matrix triggers anoikis. Disseminated tumor cells must adapt to survive matrix deprivation, while still retaining the ability to attach at secondary sites and reinitiate cell division. In this study, we elucidate mechanisms that enable reversible matrix attachment by breast cancer cells. Matrix deprival triggered AMPK activity and concomitantly inhibited AKT activity by upregulating the Akt phosphatase PHLPP2. The resultant pAMPKhigh/pAktlow state was critical for cell survival in suspension, as PHLPP2 silencing also increased anoikis while impairing autophagy and metastasis. In contrast, matrix reattachment led to Akt-mediated AMPK inactivation via PP2C-α-mediated restoration of the pAkthigh/pAMPKlow state. Clinical specimens of primary and metastatic breast cancer displayed an Akt-associated gene expression signature, whereas circulating breast tumor cells displayed an elevated AMPK-dependent gene expression signature. Our work establishes a double-negative feedback loop between Akt and AMPK to control the switch between matrix-attached and matrix-detached states needed to coordinate cell growth and survival during metastasis.Significance: These findings reveal a molecular switch that regulates cancer cell survival during metastatic dissemination, with the potential to identify targets to prevent metastasis in breast cancer. Cancer Res; 78(6); 1497-510. ©2018 AACR.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Extracellular Matrix/pathology , Proto-Oncogene Proteins c-akt/metabolism , AMP-Activated Protein Kinases/genetics , Animals , Autophagy/genetics , Breast Neoplasms/genetics , Cell Adhesion , Cell Line, Tumor , Cell Survival , Cells, Cultured , Extracellular Matrix/metabolism , Feedback, Physiological , Female , Humans , Mice, SCID , Phosphoprotein Phosphatases/genetics , Phosphoprotein Phosphatases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Up-Regulation , Xenograft Model Antitumor Assays
5.
Cancer Cell ; 32(6): 807-823.e12, 2017 Dec 11.
Article in English | MEDLINE | ID: mdl-29232555

ABSTRACT

Dysregulated mammalian target of rapamycin (mTOR) promotes cancer, but underlying mechanisms are poorly understood. We describe an mTOR-driven mouse model that displays hepatosteatosis progressing to hepatocellular carcinoma (HCC). Longitudinal proteomic, lipidomics, and metabolomic analyses revealed that hepatic mTORC2 promotes de novo fatty acid and lipid synthesis, leading to steatosis and tumor development. In particular, mTORC2 stimulated sphingolipid (glucosylceramide) and glycerophospholipid (cardiolipin) synthesis. Inhibition of fatty acid or sphingolipid synthesis prevented tumor development, indicating a causal effect in tumorigenesis. Increased levels of cardiolipin were associated with tubular mitochondria and enhanced oxidative phosphorylation. Furthermore, increased lipogenesis correlated with elevated mTORC2 activity and HCC in human patients. Thus, mTORC2 promotes cancer via formation of lipids essential for growth and energy production.


Subject(s)
Carcinogenesis/metabolism , Carcinoma, Hepatocellular/metabolism , Fatty Liver/metabolism , Lipogenesis/physiology , Liver Neoplasms/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Animals , Carcinoma, Hepatocellular/etiology , Cell Transformation, Neoplastic/metabolism , Fatty Liver/complications , Humans , Lipids/biosynthesis , Liver Neoplasms/etiology , Mice , Mice, Knockout
6.
Sci Adv ; 2(12): e1601756, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28028542

ABSTRACT

We report that the anticancer activity of the widely used diabetic drug metformin is strongly potentiated by syrosingopine. Synthetic lethality elicited by combining the two drugs is synergistic and specific to transformed cells. This effect is unrelated to syrosingopine's known role as an inhibitor of the vesicular monoamine transporters. Syrosingopine binds to the glycolytic enzyme α-enolase in vitro, and the expression of the γ-enolase isoform correlates with nonresponsiveness to the drug combination. Syrosingopine sensitized cancer cells to metformin and its more potent derivative phenformin far below the individual toxic threshold of each compound. Thus, combining syrosingopine and codrugs is a promising therapeutic strategy for clinical application for the treatment of cancer.


Subject(s)
Metformin/pharmacology , Reserpine/analogs & derivatives , Animals , Cell Line, Tumor , Drug Synergism , Glycolysis , Humans , Mice , Mice, Knockout , Phenformin/pharmacology , Phosphopyruvate Hydratase/chemistry , Reserpine/pharmacology
7.
Cold Spring Harb Perspect Biol ; 7(8): a019141, 2015 Aug 03.
Article in English | MEDLINE | ID: mdl-26238356

ABSTRACT

Cell growth is a highly regulated, plastic process. Its control involves balancing positive regulation of anabolic processes with negative regulation of catabolic processes. Although target of rapamycin (TOR) is a major promoter of growth in response to nutrients and growth factors, AMP-activated protein kinase (AMPK) suppresses anabolic processes in response to energy stress. Both TOR and AMPK are conserved throughout eukaryotic evolution. Here, we review the fundamentally important roles of these two kinases in the regulation of cell growth with particular emphasis on their mutually antagonistic signaling.


Subject(s)
AMP-Activated Protein Kinases/physiology , Cell Division/physiology , TOR Serine-Threonine Kinases/physiology , Animals , Humans , Saccharomyces cerevisiae/metabolism , Signal Transduction
8.
Breast Cancer Res ; 16(4): 420, 2014 Aug 06.
Article in English | MEDLINE | ID: mdl-25096718

ABSTRACT

INTRODUCTION: Matrix detachment triggers anoikis, a form of apoptosis, in most normal epithelial cells, while acquisition of anoikis resistance is a prime requisite for solid tumor growth. Of note, recent studies have revealed that a small population of normal human mammary epithelial cells (HMECs) survive in suspension and generate multicellular spheroids termed 'mammospheres'. Therefore, understanding how normal HMECs overcome anoikis may provide insights into breast cancer initiation and progression. METHODS: Primary breast tissue-derived normal HMECs were grown as adherent monolayers or mammospheres. The status of AMP-activated protein kinase (AMPK) and PEA15 signaling was investigated by immunoblotting. Pharmacological agents and an RNA interference (RNAi) approach were employed to gauge their roles in mammosphere formation. Immunoprecipitation and in vitro kinase assays were undertaken to evaluate interactions between AMPK and PEA15. In vitro sphere formation and tumor xenograft assays were performed to understand their roles in tumorigenicity. RESULTS: In this study, we show that mammosphere formation by normal HMECs is accompanied with an increase in AMPK activity. Inhibition or knockdown of AMPK impaired mammosphere formation. Concomitant with AMPK activation, we detected increased Ser116 phosphorylation of PEA15, which promotes its anti-apoptotic functions. Inhibition or knockdown of AMPK impaired PEA15 Ser116 phosphorylation and increased apoptosis. Knockdown of PEA15, or overexpression of the nonphosphorylatable S116A mutant of PEA15, also abrogated mammosphere formation. We further demonstrate that AMPK directly interacts with and phosphorylates PEA15 at Ser116 residue, thus identifying PEA15 as a novel AMPK substrate. Together, these data revealed that AMPK activation facilitates mammosphere formation by inhibition of apoptosis, at least in part, through Ser116 phosphorylation of PEA15. Since anoikis resistance plays a critical role in solid tumor growth, we investigated the relevance of these findings in the context of breast cancer. Significantly, we show that the AMPK-PEA15 axis plays an important role in the anchorage-independent growth of breast cancer cells both in vitro and in vivo. CONCLUSIONS: Our study identifies a novel AMPK-PEA15 signaling axis in the anchorage-independent growth of both normal and cancerous mammary epithelial cells, suggesting that breast cancer cells may employ mechanisms of anoikis resistance already inherent within a subset of normal HMECs. Thus, targeting the AMPK-PEA15 axis might prevent breast cancer dissemination and metastasis.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Anoikis , Epithelial Cells/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Mammary Glands, Human/cytology , Mammary Glands, Human/metabolism , Phosphoproteins/metabolism , Apoptosis , Apoptosis Regulatory Proteins , Cell Culture Techniques , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic/metabolism , Enzyme Activation , Female , Humans , Phosphorylation , Spheroids, Cellular
SELECTION OF CITATIONS
SEARCH DETAIL
...