Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Hepatology ; 72(5): 1528-1540, 2020 11.
Article in English | MEDLINE | ID: mdl-32770836

ABSTRACT

BACKGROUND AND AIMS: Therapies for chronic hepatitis B virus (HBV) infection are urgently needed because of viral integration, persistence of viral antigen expression, inadequate HBV-specific immune responses, and treatment regimens that require lifelong adherence to suppress the virus. Immune mobilizing monoclonal T Cell receptors against virus (ImmTAV) molecules represent a therapeutic strategy combining an affinity-enhanced T Cell receptor with an anti-CD3 T Cell-activating moiety. This bispecific fusion protein redirects T cells to specifically lyse infected cells expressing the target virus-derived peptides presented by human leukocyte antigen (HLA). APPROACH AND RESULTS: ImmTAV molecules specific for HLA-A*02:01-restricted epitopes from HBV envelope, polymerase, and core antigens were engineered. The ability of ImmTAV-Env to activate and redirect polyclonal T cells toward cells containing integrated HBV and cells infected with HBV was assessed using cytokine secretion assays and imaging-based killing assays. Elimination of infected cells was further quantified using a modified fluorescent hybridization of viral RNA assay. Here, we demonstrate that picomolar concentrations of ImmTAV-Env can redirect T cells from healthy and HBV-infected donors toward hepatocellular carcinoma (HCC) cells containing integrated HBV DNA resulting in cytokine release, which could be suppressed by the addition of a corticosteroid in vitro. Importantly, ImmTAV-Env redirection of T cells induced cytolysis of antigen-positive HCC cells and cells infected with HBV in vitro, causing a reduction of hepatitis B e antigen and specific loss of cells expressing viral RNA. CONCLUSIONS: The ImmTAV platform has the potential to enable the elimination of infected cells by redirecting endogenous non-HBV-specific T cells, bypassing exhausted HBV-specific T cells. This represents a promising therapeutic option in the treatment of chronic hepatitis B, with our lead candidate now entering trials.


Subject(s)
Hepatitis B virus/immunology , Hepatitis B, Chronic/drug therapy , Receptors, Antigen, T-Cell/therapeutic use , Recombinant Fusion Proteins/pharmacology , T-Lymphocytes/drug effects , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , CD3 Complex/antagonists & inhibitors , Cell Line, Tumor , Epitopes/immunology , HLA-A2 Antigen/immunology , Hepatitis B Surface Antigens/immunology , Hepatitis B virus/isolation & purification , Hepatitis B, Chronic/immunology , Hepatitis B, Chronic/virology , Hepatocytes , Humans , Immunoconjugates/genetics , Immunoconjugates/immunology , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Lymphocyte Activation/drug effects , Primary Cell Culture , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/therapeutic use , T-Lymphocytes/immunology
2.
Proc Natl Acad Sci U S A ; 109(12): 4598-603, 2012 Mar 20.
Article in English | MEDLINE | ID: mdl-22392992

ABSTRACT

The recruitment of T lymphocytes during diseases such as rheumatoid arthritis is regulated by stimulation of the chemokine receptors expressed by these cells. This study was designed to assess the potential of a CXCR3-specific small-molecule agonist to inhibit the migration of activated human T cells toward multiple chemokines. Further experiments defined the molecular mechanism for this anti-inflammatory activity. Analysis in vitro demonstrated agonist induced internalization of both CXCR3 and other chemokine receptors coexpressed by CXCR3(+) T cells. Unlike chemokine receptor-specific antagonists, the CXCR3 agonist inhibited migration of activated T cells toward the chemokine mixture in synovial fluid from patients with active rheumatoid arthritis. A humanized mouse air-pouch model showed that intravenous treatment with the CXCR3 agonist prevented inflammatory migration of activated human T cells toward this synovial fluid. A potential mechanism for this action was defined by demonstration that the CXCR3 agonist induces receptor cross-phosphorylation within CXCR3-CCR5 heterodimers on the surface of activated T cells. This study shows that generalized chemokine receptor desensitization can be induced by specific stimulation of a single chemokine receptor on the surface of activated human T cells. A humanized mouse model was used to demonstrate that this receptor desensitization inhibits the inflammatory response that is normally produced by the chemokines present in synovial fluid from patients with active rheumatoid arthritis.


Subject(s)
Receptors, CXCR3/metabolism , T-Lymphocytes/metabolism , Animals , Arthritis/metabolism , Autoimmunity , Chemokines/metabolism , Female , Flow Cytometry/methods , Humans , Inflammation/pathology , Leukocytes, Mononuclear/cytology , Mice , Mice, Inbred NOD , Phosphorylation , Receptors, CCR5/metabolism , T-Lymphocytes/cytology
3.
Immunology ; 135(4): 344-54, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22182481

ABSTRACT

Effective immune responses require antigen uptake by antigen-presenting cells (APC), followed by controlled endocytic proteolysis resulting in the generation of antigen-derived peptide fragments that associate with intracellular MHC class II molecules. The resultant peptide-MHC class II complexes then move to the APC surface where they activate CD4(+) T cells. Dendritic cells (DC), macrophages and B cells act as efficient APC. In many settings, including the T helper type 1 (Th1) -dependent, proteoglycan-induced arthritis model of rheumatoid arthritis, accumulating evidence demonstrates that antigen presentation by B cells is required for optimal CD4(+) T cell activation. The reasons behind this however, remain unclear. In this study we have compared the activation of CD4(+) T cells specific for the proteoglycan aggrecan following antigen presentation by DC, macrophages and B cells. We show that aggrecan-specific B cells are equally efficient APC as DC and macrophages and use similar intracellular antigen-processing pathways. Importantly, we also show that antigen presentation by aggrecan-specific B cells to TCR transgenic CD4(+) T cells results in enhanced CD4(+) T cell interferon-γ production and Th1 effector sub-set differentiation compared with that seen with DC. We conclude that preferential CD4(+) Th1 differentiation may define the requirement for B cell APC function in both proteoglycan-induced arthritis and rheumatoid arthritis.


Subject(s)
Aggrecans/immunology , Antigen-Presenting Cells/immunology , Arthritis, Rheumatoid/immunology , B-Lymphocytes/immunology , Cell Differentiation , T-Lymphocytes, Helper-Inducer/cytology , Aggrecans/chemistry , Amino Acid Sequence , Animals , Antigen Presentation/immunology , Arthritis, Rheumatoid/metabolism , Autoantigens/immunology , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , Humans , Lymphocyte Activation , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Peptides/chemical synthesis , Peptides/chemistry , Peptides/immunology , T-Lymphocytes, Helper-Inducer/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...