Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 7(10): 5709-14, 2015 Mar 18.
Article in English | MEDLINE | ID: mdl-25746067

ABSTRACT

Palladium (Pd) nanoparticles (5-20 nm) are used as the sensing layer on surface acoustic wave (SAW) devices for detecting H2. The interaction with hydrogen modifies the conductivity of the Pd nanoparticle film, producing measurable changes in acoustic wave propagation, which allows for the detection of this explosive gas. The nanoparticle-based SAW sensor responds rapidly and reversibly at room temperature.

2.
ACS Appl Mater Interfaces ; 3(2): 528-33, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21284374

ABSTRACT

A simple and straightforward method of depositing nanostructured thin films, based on LiCl-doped TiO(2), on glass and LiNbO(3) sensor substrates is demonstrated. A spin-coating technique is employed to transfer a polymer-assisted precursor solution onto substrate surfaces, followed by annealing at 520°C to remove organic components and drive nanostructure formation. The sensor material obtained consists of coin-shaped nanoparticles several hundred nanometers in diameter and less than 50 nm thick. The average thickness of the film was estimated by atomic force microscopy (AFM) to be 140 nm. Humidity sensing properties of the nanostructured material and sensor response times were studied using conductometric and surface acoustic wave (SAW) sensor techniques, revealing reversible signals with good reproducibility and fast response times of about 0.75 s. The applicability of this nanostructured film for construction of rapid humidity sensors was demonstrated. Compared with known complex and expensive methods of synthesizing sophisticated nanostructures for sensor applications, such as physical vapor deposition (PVD) and chemical vapor deposition (CVD), this work presents a relatively simple and inexpensive technique to produce SAW humidity sensor devices with competitive performance characteristics.


Subject(s)
Environmental Monitoring/instrumentation , Environmental Monitoring/methods , Humidity , Lithium Chloride/chemistry , Nanostructures/chemistry , Titanium/chemistry , Electric Conductivity , Microscopy, Atomic Force , Microscopy, Electron, Scanning
3.
Langmuir ; 24(9): 5161-5, 2008 May 06.
Article in English | MEDLINE | ID: mdl-18351789

ABSTRACT

The formation of a siloxane self-assembled monolayer (SAM) film on a lithium niobate substrate was investigated for surface acoustic wave (SAW) sensor devices for the detection of hydrogen. The most widely used SAM coupling reagent, octadecyltrichlorosilane, etches aluminum metal features that are integral to sensor devices, due to the formation of high local concentrations of hydrochloric acid. An alternative coupling reagent, octadecyltrimethoxysilane (OTMS), does not show any etching of metal parts. OTMS and related molecules are compatible with conventional SAW device manufacturing techniques and other devices that contain metal features susceptible to etching by acid released in the SAM formation process.

4.
Article in English | MEDLINE | ID: mdl-16529112

ABSTRACT

Surface acoustic wave (SAW)-based sensors can offer wireless, passive operation in numerous environments, and various device embodiments are used for retrieval of the sensed data information. Single sensor systems typically can use a single carrier frequency and a simple device embodiment because tagging is not required. In a multisensor environment, it is necessary to both identify the sensor and retrieve the sensed information. This paper presents the concept of orthogonal frequency coding (OFC) for applications to SAW sensor technology. The OFC offers all advantages inherent to spread spectrum communications, including enhanced processing gain and lower interrogation power spectral density (PSD). It is shown that the time ambiguity in the OFC compressed pulse is significantly reduced as compared with a single frequency tag having the same code length, and additional coding can be added using a pseudo-noise (PN) sequence. The OFC approach is general and should be applicable to many differing SAW sensors for temperature, pressure, liquid, gases, etc. Device embodiments are shown, and a potential transceiver is described. Measured device results are presented and compared with coupling of modes (COM) model predictions to demonstrate performance. Devices then are used in computer simulations of the proposed transceiver design, and the results of an OFC sensor system are discussed.


Subject(s)
Information Storage and Retrieval/methods , Product Labeling/instrumentation , Telecommunications/instrumentation , Telemetry/instrumentation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Product Labeling/methods , Radio Waves , Telemetry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...