Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Stroke Res ; 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37917400

ABSTRACT

While treatments exist for the acute phase of stroke, there are limited options for patients with chronic infarcts and long-term disability. Allogenic mesenchymal stem cells (alloMSCs) show promise for the treatment of stroke soon after ischemic injury. There is, however, no information on the use of autologous MSCs (autoMSCs), delivered intracerebrally in rats with a chronic infarct. In this study, rats underwent middle cerebral artery occlusion (MCAO) to induce stroke followed by bone marrow aspiration and MSC expansion in a closed bioreactor. Four weeks later, brain MRI was obtained and autoMSCs (1 × 106, 2.5 × 106 or 5 × 106; n = 6 each) were stereotactically injected into the peri-infarct and compared to controls (MCAO only; MCAO + PBS; n = 6-9). Behavior was assessed using the modified neurological severity score (mNSS). For comparison, an additional cohort of MCAO rats were implanted with 2.5 × 106 alloMSCs generated from a healthy rat. All doses of autoMSCs produced significant improvement (54-70%) in sensorimotor function 60 days later. In contrast, alloMSCs improved only 31.7%, similar to that in PBS controls 30%. Quantum dot-labeled auto/alloMSCs were found exclusively at the implantation site throughout the post-transplantation period with no tumor formation on MRI or Ki67 staining of engrafted MSCs. Small differences in stroke volume and no differences in corpus callosum width were observed after MSC treatment. Stroke-induced glial reactivity in the peri-infarct was long-lasting and unabated by auto/alloMSC transplantation. These studies suggest that intracerebral transplantation of autoMSCs as compared to alloMSCs may be a promising treatment in chronic stroke.

2.
RSC Adv ; 43(6): 36231-36237, 2016.
Article in English | MEDLINE | ID: mdl-27114820

ABSTRACT

Two novel 2'-deoxyadenosine (dA) analogues, Si2-dA-SCN and Si2-dA-SeCN, and two novel phenylalanine (Phe) analogues, Boc-Me-PheCH2SCN and Boc-Me-PheCH2SeCN, have been synthesized and the thiocyanate (SCN) and selenocyanate (SeCN) functional groups evaluated as vibrational reporters. The syntheses of Si2-dA-SCN and Si2-dA-SeCN were accomplished in three steps in 16% and 32% overall yields, respectively, and the syntheses of Boc-Me-PheCH2SCN and Boc-Me-PheCH2SeCN were completed in four steps in 8.9% and 2.3% overall yields, respectively. The SCN and SeCN stretch vibrational modes were shown to be sensitive to the local environment by frequency shifts and full-width half-maximum (fwhm) changes in response to tetrahydrofuran (THF) and THF/water solvent mixtures. The vibrational lifetimes of the Si2-dA-SeCN (237±12 ps) and Boc-Me-PheCH2SeCN (295±31 ps) in THF solution were determined by ultrafast infrared pump-probe spectroscopy to be 1.5 to 3 times longer than those for Si2-dA-SCN (140±6 ps) and Boc-Me-PheCH2SCN (102±4 ps). The longer lifetimes for the SeCN analogues were attributed to the better insulating effects of the heavier selenium atom compared to the sulfur atom. The solvent sensitivity and longer vibrational lifetimes compared to other vibrational reporters suggest that SCN and SeCN vibrational reporters are well suited to studying several dynamic processes including protein and nucleic acid hydration and conformational changes, however stability issues may require post-synthetic modification methods to incorporate these reporters into biomacromolecules.

3.
Mol Cell ; 60(1): 47-62, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26387735

ABSTRACT

Mitochondrial permeability transition is a phenomenon in which the mitochondrial permeability transition pore (PTP) abruptly opens, resulting in mitochondrial membrane potential (ΔΨm) dissipation, loss of ATP production, and cell death. Several genetic candidates have been proposed to form the PTP complex, however, the core component is unknown. We identified a necessary and conserved role for spastic paraplegia 7 (SPG7) in Ca(2+)- and ROS-induced PTP opening using RNAi-based screening. Loss of SPG7 resulted in higher mitochondrial Ca(2+) retention, similar to cyclophilin D (CypD, PPIF) knockdown with sustained ΔΨm during both Ca(2+) and ROS stress. Biochemical analyses revealed that the PTP is a heterooligomeric complex composed of VDAC, SPG7, and CypD. Silencing or disruption of SPG7-CypD binding prevented Ca(2+)- and ROS-induced ΔΨm depolarization and cell death. This study identifies an ubiquitously expressed IMM integral protein, SPG7, as a core component of the PTP at the OMM and IMM contact site.


Subject(s)
Cyclophilins/metabolism , Metalloendopeptidases/genetics , Metalloendopeptidases/metabolism , Mitochondria/metabolism , Voltage-Dependent Anion Channel 1/metabolism , ATPases Associated with Diverse Cellular Activities , Binding Sites , Calcium/metabolism , Cell Death , Cyclophilins/chemistry , HEK293 Cells , HeLa Cells , Humans , Membrane Potential, Mitochondrial , Metalloendopeptidases/chemistry , Mitochondrial Membranes/metabolism , RNA Interference , Reactive Oxygen Species/metabolism
4.
Sci Signal ; 8(366): ra23, 2015 Mar 03.
Article in English | MEDLINE | ID: mdl-25737585

ABSTRACT

Cytosolic Ca2+ signals, generated through the coordinated translocation of Ca2+ across the plasma membrane (PM) and endoplasmic reticulum (ER) membrane, mediate diverse cellular responses. Mitochondrial Ca2+ is important for mitochondrial function, and when cytosolic Ca2+ concentration becomes too high, mitochondria function as cellular Ca2+ sinks. By measuring mitochondrial Ca2+ currents, we found that mitochondrial Ca2+ uptake was reduced in chicken DT40 B lymphocytes lacking either the ER-localized inositol trisphosphate receptor (IP3R), which releases Ca2+ from the ER, or Orai1 or STIM1, components of the PM-localized Ca2+ -permeable channel complex that mediates store-operated calcium entry (SOCE) in response to depletion of ER Ca2+ stores. The abundance of MCU, the pore-forming subunit of the mitochondrial Ca2+ uniporter, was reduced in cells deficient in IP3R, STIM1, or Orai1. Chromatin immunoprecipitation and promoter reporter analyses revealed that the Ca2+ -regulated transcription factor CREB (cyclic adenosine monophosphate response element-binding protein) directly bound the MCU promoter and stimulated expression. Lymphocytes deficient in IP3R, STIM1, or Orai1 exhibited altered mitochondrial metabolism, indicating that Ca2+ released from the ER and SOCE-mediated signals modulates mitochondrial function. Thus, our results showed that a transcriptional regulatory circuit involving Ca2+ -dependent activation of CREB controls the Ca2+ uptake capability of mitochondria and hence regulates mitochondrial metabolism.


Subject(s)
Avian Proteins/metabolism , Calcium Channels/metabolism , Calcium Signaling/physiology , Cyclic AMP Response Element-Binding Protein/metabolism , Mitochondrial Proteins/metabolism , Animals , Avian Proteins/genetics , Calcium Channels/genetics , Cell Line , Chickens , Cyclic AMP Response Element-Binding Protein/genetics , Endoplasmic Reticulum , Mice , Mice, Knockout , Mitochondrial Proteins/genetics , ORAI1 Protein , Stromal Interaction Molecule 1
5.
J Phys Chem B ; 117(30): 8987-93, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23865850

ABSTRACT

We have synthesized the unnatural amino acid (UAA), 4-azidomethyl-L-phenylalanine (pN3CH2Phe), to serve as an effective vibrational reporter of local protein environments. The position, extinction coefficient, and sensitivity to local environment of the azide asymmetric stretch vibration of pN3CH2Phe are compared to the vibrational reporters: 4-cyano-L-phenylalanine (pCNPhe) and 4-azido-L-phenylalanine (pN3Phe). This UAA was genetically incorporated in a site-specific manner utilizing an engineered, orthogonal aminoacyl-tRNA synthetase in response to an amber codon with high efficiency and fidelity into two distinct sites in superfolder green fluorescent protein (sfGFP). This allowed for the dependence of the azide asymmetric stretch vibration of pN3CH2Phe to different protein environments to be measured. The photostability of pN3CH2Phe was also measured relative to the photoreactive UAA, pN3Phe.


Subject(s)
Azides/chemistry , Green Fluorescent Proteins/chemistry , Phenylalanine/analogs & derivatives , Amino Acyl-tRNA Synthetases/metabolism , Green Fluorescent Proteins/metabolism , Hydrophobic and Hydrophilic Interactions , Nitriles/chemistry , Phenylalanine/chemistry , Spectroscopy, Fourier Transform Infrared , Ultraviolet Rays , Vibration
SELECTION OF CITATIONS
SEARCH DETAIL
...