Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 13(6): e10209, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37361899

ABSTRACT

Mutualisms are prevalent in many ecosystems, yet little is known about how symbioses are affected by ecological pressures. Here, we show delayed recovery for 13 coral-dwelling goby fishes (genus Gobiodon) compared with their host Acropora corals following four consecutive cyclones and heatwaves. While corals became twice as abundant in 3 years postdisturbances, gobies were only half as abundant relative to predisturbances and half of the goby species disappeared. Although gobies primarily occupied one coral species in greater abundance predisturbances, surviving goby species shifted hosts to newly abundant coral species when their previously occupied hosts became rare postdisturbances. As host specialization is key for goby fitness, shifting hosts may have negative fitness consequences for gobies and corals alike and affect their survival in response to environmental changes. Our study is an early sign that mutualistic partners may not recover similarly from multiple disturbances, and that goby host plasticity, while potentially detrimental, may be the only possibility for early recovery.

2.
Sci Rep ; 11(1): 16420, 2021 08 12.
Article in English | MEDLINE | ID: mdl-34385506

ABSTRACT

With the onset and increasing frequency of multiple disturbances, the recovery potential of critical ecosystem-building species and their mutual symbionts is threatened. Similar effects to both hosts and their symbionts following disturbances have been assumed. However, we report unequal declines between hosts and symbionts throughout multiple climate-driven disturbances in reef-building Acropora corals and cryptobenthic coral-dwelling Gobiodon gobies. Communities were surveyed before and after consecutive cyclones (2014, 2015) and heatwaves (2016, 2017). After cyclones, coral diameter and goby group size (i.e., the number of gobies within each coral) decreased similarly by 28-30%. After heatwave-induced bleaching, coral diameter decreased substantially (47%) and gobies mostly inhabited corals singly. Despite several coral species persisting after bleaching, all goby species declined, leaving 78% of corals uninhabited. These findings suggest that gobies, which are important mutual symbionts for corals, are unable to cope with consecutive disturbances. This disproportionate decline could lead to ecosystem-level disruptions through loss of key symbiont services to corals.


Subject(s)
Anthozoa , Fishes , Animals , Australia , Biodiversity , Cyclonic Storms , Pacific Ocean , Population Dynamics , Symbiosis
3.
Sci Rep ; 10(1): 17497, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33060667

ABSTRACT

Conflict between humans and large predators is a longstanding challenge that can present negative consequences for humans and wildlife. Sharks have a global distribution and are considered to pose a potential threat to humans; concurrently many shark species are themselves threatened. Developing strategies for coexistence between humans and this keystone group is imperative. We assess blimp surveillance as a technique to simply and effectively reduce shark encounters at ocean beaches and determine the social acceptance of this technique as compared to an established mitigation strategy-shark meshing. We demonstrate the suitability of blimps for risk mitigation, with detection probabilities of shark analogues by professional lifeguards of 0.93 in ideal swimming conditions. Social surveys indicate strong social acceptance of blimps and preference for non-lethal shark mitigation. We show that continuous aerial surveillance can provide a measurable reduction in risk from sharks, improving beach safety and facilitating coexistence between people and wildlife.


Subject(s)
Behavior, Animal , Environmental Monitoring/methods , Predatory Behavior/physiology , Sharks/physiology , Swimming/physiology , Aircraft , Animals , Conservation of Natural Resources , Geography , Humans , Oceans and Seas , Probability
4.
Mol Phylogenet Evol ; 137: 263-273, 2019 08.
Article in English | MEDLINE | ID: mdl-31125658

ABSTRACT

What drives the evolution of sociality in animals? Many robust studies in terrestrial organisms have pointed toward various kinship-based, ecological and life-history traits or phylogenetic constraint which have played a role in the evolution of sociality. These traits are not mutually exclusive and the exact combination of traits is likely taxon-specific. Phylogenetic comparative analyses have been instrumental in identifying social lineages and comparing various traits with non-social lineages to give broad evolutionary perspectives on the development of sociality. Few studies have attempted this approach in marine vertebrate systems. Social marine fishes are particularly interesting because many have a pelagic larval phase and non-conventional life-history strategies (e.g. bi-directional sex-change) not often observed in terrestrial animals. Such strategies provide novel insights into terrestrially-derived theories of social evolution. Here, we assess the strength of the phylogenetic signal of sociality in the Gobiodon genus with Pagel's lambda and Blomberg's K parameters. We found some evidence of a phylogenetic signal of sociality, but factors other than phylogenetic constraint also have a strong influence on the extant social state of each species. We then use phylogenetic generalized least squares analyses to examine several ecological and life-history traits that may have influenced the evolution of sociality in the genus. We found an interaction of habitat size and fish length was the strongest predictor of sociality. Sociality in larger species was more dependent on coral size than in smaller species, but smaller species were more social overall, regardless of coral size. Finally, we comment on findings regarding the validity of the species G. spilophthalmus which arose during the course of our research. These findings in a group of marine fishes add a unique perspective on the evolution of sociality to the excellent terrestrial work conducted in this field.


Subject(s)
Ecology , Life Cycle Stages , Perciformes/classification , Perciformes/growth & development , Phylogeny , Social Behavior , Animals , Anthozoa/physiology , Australia , Geography , Larva/physiology , Species Specificity
5.
PLoS One ; 13(9): e0202407, 2018.
Article in English | MEDLINE | ID: mdl-30183723

ABSTRACT

Social organization is a key factor influencing a species' foraging and reproduction, which may ultimately affect their survival and ability to recover from catastrophic disturbance. Severe weather events such as cyclones can have devastating impacts to the physical structure of coral reefs and on the abundance and distribution of its faunal communities. Despite the importance of social organization to a species' survival, relatively little is known about how major disturbances such as tropical cyclones may affect social structures or how different social strategies affect a species' ability to cope with disturbance. We sampled group sizes and coral sizes of group-forming and pair-forming species of the Gobiid genus Gobiodon at Lizard Island, Great Barrier Reef, Australia, before and after two successive category 4 tropical cyclones. Group sizes of group-forming species decreased after each cyclone, but showed signs of recovery four months after the first cyclone. A similar increase in group sizes was not evident in group-forming species after the second cyclone. There was no change in mean pair-forming group size after either cyclone. Coral sizes inhabited by both group- and pair-forming species decreased throughout the study, meaning that group-forming species were forced to occupy smaller corals on average than before cyclone activity. This may reduce their capacity to maintain larger group sizes through multiple processes. We discuss these patterns in light of two non-exclusive hypotheses regarding the drivers of sociality in Gobiodon, suggesting that benefits of philopatry with regards to habitat quality may underpin the formation of social groups in this genus.


Subject(s)
Anthozoa/physiology , Coral Reefs , Cyclonic Storms , Ecosystem , Fishes/physiology , Animals , Australia , Fishes/classification , Geography , Islands , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...