Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Nucleic Acids Res ; 50(W1): W516-W526, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35687095

ABSTRACT

Testing hypothesis about the biogeography of genes using large data resources such as Tara Oceans marine metagenomes and metatranscriptomes requires significant hardware resources and programming skills. The new release of the 'Ocean Gene Atlas' (OGA2) is a freely available intuitive online service to mine large and complex marine environmental genomic databases. OGA2 datasets available have been extended and now include, from the Tara Oceans portfolio: (i) eukaryotic Metagenome-Assembled-Genomes (MAGs) and Single-cell Assembled Genomes (SAGs) (10.2E+6 coding genes), (ii) version 2 of Ocean Microbial Reference Gene Catalogue (46.8E+6 non-redundant genes), (iii) 924 MetaGenomic Transcriptomes (7E+6 unigenes), (iv) 530 MAGs from an Arctic MAG catalogue (1E+6 genes) and (v) 1888 Bacterial and Archaeal Genomes (4.5E+6 genes), and an additional dataset from the Malaspina 2010 global circumnavigation: (vi) 317 Malaspina Deep Metagenome Assembled Genomes (0.9E+6 genes). Novel analyses enabled by OGA2 include phylogenetic tree inference to visualize user queries within their context of sequence homologues from both the marine environmental dataset and the RefSeq database. An Application Programming Interface (API) now allows users to query OGA2 using command-line tools, hence providing local workflow integration. Finally, gene abundance can be interactively filtered directly on map displays using any of the available environmental variables. Ocean Gene Atlas v2.0 is freely-available at: https://tara-oceans.mio.osupytheas.fr/ocean-gene-atlas/.


Subject(s)
Bacteria , Eukaryota , Marine Biology , Plankton , Bacteria/genetics , Eukaryota/genetics , Metagenome , Phylogeny , Plankton/genetics
2.
Science ; 376(6589): 156-162, 2022 04 08.
Article in English | MEDLINE | ID: mdl-35389782

ABSTRACT

Whereas DNA viruses are known to be abundant, diverse, and commonly key ecosystem players, RNA viruses are insufficiently studied outside disease settings. In this study, we analyzed ≈28 terabases of Global Ocean RNA sequences to expand Earth's RNA virus catalogs and their taxonomy, investigate their evolutionary origins, and assess their marine biogeography from pole to pole. Using new approaches to optimize discovery and classification, we identified RNA viruses that necessitate substantive revisions of taxonomy (doubling phyla and adding >50% new classes) and evolutionary understanding. "Species"-rank abundance determination revealed that viruses of the new phyla "Taraviricota," a missing link in early RNA virus evolution, and "Arctiviricota" are widespread and dominant in the oceans. These efforts provide foundational knowledge critical to integrating RNA viruses into ecological and epidemiological models.


Subject(s)
Genome, Viral , RNA Viruses , Viruses , Biological Evolution , Ecosystem , Oceans and Seas , Phylogeny , RNA , RNA Viruses/genetics , Virome/genetics , Viruses/genetics
3.
Commun Biol ; 4(1): 604, 2021 05 21.
Article in English | MEDLINE | ID: mdl-34021239

ABSTRACT

The deep sea, the largest ocean's compartment, drives planetary-scale biogeochemical cycling. Yet, the functional exploration of its microbial communities lags far behind other environments. Here we analyze 58 metagenomes from tropical and subtropical deep oceans to generate the Malaspina Gene Database. Free-living or particle-attached lifestyles drive functional differences in bathypelagic prokaryotic communities, regardless of their biogeography. Ammonia and CO oxidation pathways are enriched in the free-living microbial communities and dissimilatory nitrate reduction to ammonium and H2 oxidation pathways in the particle-attached, while the Calvin Benson-Bassham cycle is the most prevalent inorganic carbon fixation pathway in both size fractions. Reconstruction of the Malaspina Deep Metagenome-Assembled Genomes reveals unique non-cyanobacterial diazotrophic bacteria and chemolithoautotrophic prokaryotes. The widespread potential to grow both autotrophically and heterotrophically suggests that mixotrophy is an ecologically relevant trait in the deep ocean. These results expand our understanding of the functional microbial structure and metabolic capabilities of the largest Earth aquatic ecosystem.


Subject(s)
Bacteria/genetics , Bacteria/metabolism , Carbon Cycle , DNA, Bacterial/genetics , Metagenome , Photosynthesis , Seawater/microbiology , Bacteria/classification , Bacteria/isolation & purification , DNA, Bacterial/analysis
4.
Mol Ecol Resour ; 21(4): 1347-1358, 2021 May.
Article in English | MEDLINE | ID: mdl-33434383

ABSTRACT

The Ocean Barcode Atlas (OBA) is a user friendly web service designed for biologists who wish to explore the biodiversity and biogeography of marine organisms locked in otherwise difficult to mine planetary scale DNA metabarcode data sets. Using just a web browser, a comprehensive picture of the diversity of a taxon or a barcode sequence is visualized graphically on world maps and interactive charts. Interactive results panels allow dynamic threshold adjustments and the display of diversity results in their environmental context measured at the time of sampling (temperature, oxygen, latitude, etc). Ecological analyses such as alpha and beta-diversity plots are produced via publication quality vector graphics representations. Currently, the Ocean Barcode Altas is deployed online with the (i) Tara Oceans eukaryotic 18S-V9 rDNA metabarcodes; (ii) Tara Oceans 16S/18S rRNA mi Tags; and (iii) 16S-V4 V5 metabarcodes collected during the Malaspina-2010 expedition. Additional prokaryotic or eukaryotic plankton barcode data sets will be added upon availability, given they provide the required complement of barcodes (including raw reads to compute barcode abundance) associated with their contextual environmental variables. Ocean Barcode Atlas is a freely-available web service at: http://oba.mio.osupytheas.fr/ocean-atlas/.


Subject(s)
Aquatic Organisms , Biodiversity , DNA Barcoding, Taxonomic , Aquatic Organisms/classification , Data Visualization , Internet , Oceans and Seas , Plankton , RNA, Ribosomal, 18S , Software
5.
NAR Genom Bioinform ; 2(2): lqaa018, 2020 Jun.
Article in English | MEDLINE | ID: mdl-33575578

ABSTRACT

Although bioluminescent bacteria are the most abundant and widely distributed of all light-emitting organisms, the biological role and evolutionary history of bacterial luminescence are still shrouded in mystery. Bioluminescence has so far been observed in the genomes of three families of Gammaproteobacteria in the form of canonical lux operons that adopt the CDAB(F)E(G) gene order. LuxA and luxB encode the two subunits of bacterial luciferase responsible for light-emission. Our deep exploration of public marine environmental databases considerably expands this view by providing a catalog of new lux homolog sequences, including 401 previously unknown luciferase-related genes. It also reveals a broader diversity of the lux operon organization, which we observed in previously undescribed configurations such as CEDA, CAED and AxxCE. This expanded operon diversity provides clues for deciphering lux operon evolution and propagation within the bacterial domain. Leveraging quantitative tracking of marine bacterial genes afforded by planetary scale metagenomic sampling, our study also reveals that the novel lux genes and operons described herein are more abundant in the global ocean than the canonical CDAB(F)E(G) operon.

6.
Cell ; 179(5): 1068-1083.e21, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31730850

ABSTRACT

Ocean microbial communities strongly influence the biogeochemistry, food webs, and climate of our planet. Despite recent advances in understanding their taxonomic and genomic compositions, little is known about how their transcriptomes vary globally. Here, we present a dataset of 187 metatranscriptomes and 370 metagenomes from 126 globally distributed sampling stations and establish a resource of 47 million genes to study community-level transcriptomes across depth layers from pole-to-pole. We examine gene expression changes and community turnover as the underlying mechanisms shaping community transcriptomes along these axes of environmental variation and show how their individual contributions differ for multiple biogeochemically relevant processes. Furthermore, we find the relative contribution of gene expression changes to be significantly lower in polar than in non-polar waters and hypothesize that in polar regions, alterations in community activity in response to ocean warming will be driven more strongly by changes in organismal composition than by gene regulatory mechanisms. VIDEO ABSTRACT.


Subject(s)
Gene Expression Regulation , Metagenome , Oceans and Seas , Transcriptome/genetics , Geography , Microbiota/genetics , Molecular Sequence Annotation , RNA, Messenger/genetics , RNA, Messenger/metabolism , Seawater/microbiology , Temperature
7.
Nat Commun ; 10(1): 1014, 2019 03 04.
Article in English | MEDLINE | ID: mdl-30833550

ABSTRACT

Metagenomic sequencing has greatly improved our ability to profile the composition of environmental and host-associated microbial communities. However, the dependency of most methods on reference genomes, which are currently unavailable for a substantial fraction of microbial species, introduces estimation biases. We present an updated and functionally extended tool based on universal (i.e., reference-independent), phylogenetic marker gene (MG)-based operational taxonomic units (mOTUs) enabling the profiling of >7700 microbial species. As more than 30% of them could not previously be quantified at this taxonomic resolution, relative abundance estimates based on mOTUs are more accurate compared to other methods. As a new feature, we show that mOTUs, which are based on essential housekeeping genes, are demonstrably well-suited for quantification of basal transcriptional activity of community members. Furthermore, single nucleotide variation profiles estimated using mOTUs reflect those from whole genomes, which allows for comparing microbial strain populations (e.g., across different human body sites).


Subject(s)
Metagenomics , Microbiota/genetics , Phylogeny , Algorithms , Cluster Analysis , Computational Biology/methods , Gene Expression Profiling , Genes, Essential , Genetic Markers , Genome , Host Microbial Interactions , Humans , Molecular Sequence Annotation , Sequence Alignment , Sequence Analysis, DNA
8.
Nat Biotechnol ; 37(1): 29-37, 2019 01.
Article in English | MEDLINE | ID: mdl-30556814

ABSTRACT

We present an extension of the Minimum Information about any (x) Sequence (MIxS) standard for reporting sequences of uncultivated virus genomes. Minimum Information about an Uncultivated Virus Genome (MIUViG) standards were developed within the Genomic Standards Consortium framework and include virus origin, genome quality, genome annotation, taxonomic classification, biogeographic distribution and in silico host prediction. Community-wide adoption of MIUViG standards, which complement the Minimum Information about a Single Amplified Genome (MISAG) and Metagenome-Assembled Genome (MIMAG) standards for uncultivated bacteria and archaea, will improve the reporting of uncultivated virus genomes in public databases. In turn, this should enable more robust comparative studies and a systematic exploration of the global virosphere.


Subject(s)
Genome, Viral , Genomics/methods , Virus Cultivation , Viruses/genetics , Viruses/isolation & purification , Databases, Genetic
9.
Viruses ; 10(9)2018 09 13.
Article in English | MEDLINE | ID: mdl-30217078

ABSTRACT

"Megaviridae" is a proposed family of giant viruses infecting unicellular eukaryotes. These viruses are ubiquitous in the sea and have impact on marine microbial community structure and dynamics through their lytic infection cycle. However, their diversity and biogeography have been poorly characterized due to the scarce detection of Megaviridae sequences in metagenomes, as well as the limitation of reference sequences used to design specific primers for this viral group. Here, we propose a set of 82 degenerated primers (referred to as MEGAPRIMER), targeting DNA polymerase genes (polBs) of Megaviridae. MEGAPRIMER was designed based on 921 Megaviridae polBs from sequenced genomes and metagenomes. By applying this primer set to environmental DNA meta-barcoding of a coastal seawater sample, we report 5595 non-singleton operational taxonomic units (OTUs) of Megaviridae at 97% nucleotide sequence identity. The majority of the OTUs were found to form diverse clades, which were phylogenetically distantly phylogenetically related to known viruses such as Mimivirus. The Megaviridae OTUs detected in this study outnumber the giant virus OTUs identified in previous individual studies by more than an order of magnitude. Hence, MEGAPRIMER represents a useful tool to study the diversity of Megaviridae at the population level in natural environments.


Subject(s)
Biodiversity , Giant Viruses/classification , Giant Viruses/genetics , Polymerase Chain Reaction , Seawater/virology , Water Microbiology , Computational Biology/methods , Genome, Viral , Metagenome , Metagenomics/methods , Phylogeny , Polymerase Chain Reaction/methods
10.
ISME J ; 12(12): 3046, 2018 12.
Article in English | MEDLINE | ID: mdl-30068936

ABSTRACT

The original version of this Article contained an error in the main text citations and reference list. These errors have now been corrected in both the PDF and HTML versions of the Article.

11.
Nucleic Acids Res ; 46(W1): W289-W295, 2018 07 02.
Article in English | MEDLINE | ID: mdl-29788376

ABSTRACT

The Ocean Gene Atlas is a web service to explore the biogeography of genes from marine planktonic organisms. It allows users to query protein or nucleotide sequences against global ocean reference gene catalogs. With just one click, the abundance and location of target sequences are visualized on world maps as well as their taxonomic distribution. Interactive results panels allow for adjusting cutoffs for alignment quality and displaying the abundances of genes in the context of environmental features (temperature, nutrients, etc.) measured at the time of sampling. The ease of use enables non-bioinformaticians to explore quantitative and contextualized information on genes of interest in the global ocean ecosystem. Currently the Ocean Gene Atlas is deployed with (i) the Ocean Microbial Reference Gene Catalog (OM-RGC) comprising 40 million non-redundant mostly prokaryotic gene sequences associated with both Tara Oceans and Global Ocean Sampling (GOS) gene abundances and (ii) the Marine Atlas of Tara Ocean Unigenes (MATOU) composed of >116 million eukaryote unigenes. Additional datasets will be added upon availability of further marine environmental datasets that provide the required complement of sequence assemblies, raw reads and contextual environmental parameters. Ocean Gene Atlas is a freely-available web service at: http://tara-oceans.mio.osupytheas.fr/ocean-gene-atlas/.


Subject(s)
Ecosystem , Internet , Plankton/genetics , Software , Aquatic Organisms/genetics , Biodiversity , Oceans and Seas , Phylogeography
12.
Microbes Environ ; 33(2): 162-171, 2018 Jul 04.
Article in English | MEDLINE | ID: mdl-29806626

ABSTRACT

Since the discovery of the giant mimivirus, evolutionarily related viruses have been isolated or identified from various environments. Phylogenetic analyses of this group of viruses, tentatively referred to as the family "Megaviridae", suggest that it has an ancient origin that may predate the emergence of major eukaryotic lineages. Environmental genomics has since revealed that Megaviridae represents one of the most abundant and diverse groups of viruses in the ocean. In the present study, we compared the taxon richness and phylogenetic diversity of Megaviridae, Bacteria, and Archaea using DNA-dependent RNA polymerase as a common marker gene. By leveraging existing microbial metagenomic data, we found higher richness and phylogenetic diversity in this single viral family than in the two prokaryotic domains. We also obtained results showing that the evolutionary rate alone cannot account for the observed high diversity of Megaviridae lineages. These results suggest that the Megaviridae family has a deep co-evolutionary history with diverse marine protists since the early "Big-Bang" radiation of the eukaryotic tree of life.


Subject(s)
Archaea/classification , Bacteria/classification , Biodiversity , Giant Viruses/classification , Oceans and Seas , Phylogeny , Archaea/genetics , Bacteria/genetics , Databases, Genetic , Evolution, Molecular , Giant Viruses/genetics , Metagenomics , RNA Polymerase II/genetics
13.
ISME J ; 12(5): 1287-1295, 2018 05.
Article in English | MEDLINE | ID: mdl-29382948

ABSTRACT

Viruses infecting microorganisms are ubiquitous and abundant in the ocean. However, it is unclear when and where the numerous viral particles we observe in the sea are produced and whether they are active. To address these questions, we performed time-series analyses of viral metagenomes and microbial metatranscriptomes collected over a period of 24 h at a Japanese coastal site. Through mapping the metatranscriptomic reads on three sets of viral genomes ((i) 878 contigs of Osaka Bay viromes (OBV), (ii) 1766 environmental viral genomes from marine viromes, and (iii) 2429 reference viral genomes), we revealed that all the local OBV contigs were transcribed in the host fraction. This indicates that the majority of viral populations detected in viromes are active, and suggests that virions are rapidly diluted as a result of diffusion, currents, and mixing. Our data further revealed a peak of cyanophage gene expression in the afternoon/dusk followed by an increase of genomes from their virions at night and less-coherent infectious patterns for viruses putatively infecting various groups of heterotrophs. This suggests that cyanophages drive the diel release of cyanobacteria-derived organic matter into the environment and viruses of heterotrophic bacteria might have adapted to the population-specific life cycles of hosts.


Subject(s)
Bacteriophages/genetics , Genome, Viral , Seawater/virology , Bacteriophages/metabolism , Cyanobacteria/virology , Gene Expression Profiling , Japan , Metagenome , Metagenomics , Periodicity , Virion/genetics
14.
Nat Commun ; 9(1): 310, 2018 01 22.
Article in English | MEDLINE | ID: mdl-29358710

ABSTRACT

Single-celled eukaryotes (protists) are critical players in global biogeochemical cycling of nutrients and energy in the oceans. While their roles as primary producers and grazers are well appreciated, other aspects of their life histories remain obscure due to challenges in culturing and sequencing their natural diversity. Here, we exploit single-cell genomics and metagenomics data from the circumglobal Tara Oceans expedition to analyze the genome content and apparent oceanic distribution of seven prevalent lineages of uncultured heterotrophic stramenopiles. Based on the available data, each sequenced genome or genotype appears to have a specific oceanic distribution, principally correlated with water temperature and depth. The genome content provides hypotheses for specialization in terms of cell motility, food spectra, and trophic stages, including the potential impact on their lifestyles of horizontal gene transfer from prokaryotes. Our results support the idea that prominent heterotrophic marine protists perform diverse functions in ocean ecology.

15.
Nat Commun ; 9(1): 373, 2018 01 25.
Article in English | MEDLINE | ID: mdl-29371626

ABSTRACT

While our knowledge about the roles of microbes and viruses in the ocean has increased tremendously due to recent advances in genomics and metagenomics, research on marine microbial eukaryotes and zooplankton has benefited much less from these new technologies because of their larger genomes, their enormous diversity, and largely unexplored physiologies. Here, we use a metatranscriptomics approach to capture expressed genes in open ocean Tara Oceans stations across four organismal size fractions. The individual sequence reads cluster into 116 million unigenes representing the largest reference collection of eukaryotic transcripts from any single biome. The catalog is used to unveil functions expressed by eukaryotic marine plankton, and to assess their functional biogeography. Almost half of the sequences have no similarity with known proteins, and a great number belong to new gene families with a restricted distribution in the ocean. Overall, the resource provides the foundations for exploring the roles of marine eukaryotes in ocean ecology and biogeochemistry.


Subject(s)
Aquatic Organisms , Eukaryota/genetics , Eukaryotic Cells/metabolism , Metagenome , Phylogeny , Zooplankton/genetics , Amino Acid Sequence , Animals , Atlases as Topic , Bacteria/classification , Bacteria/genetics , Biodiversity , Ecosystem , Eukaryota/classification , Eukaryotic Cells/cytology , Metagenomics/methods , Oceans and Seas , Phytoplankton/classification , Phytoplankton/genetics , Seawater , Viruses/classification , Viruses/genetics , Zooplankton/classification
16.
mSphere ; 2(2)2017.
Article in English | MEDLINE | ID: mdl-28261669

ABSTRACT

Metagenomics has revealed the existence of numerous uncharacterized viral lineages, which are referred to as viral "dark matter." However, our knowledge regarding viral genomes is biased toward culturable viruses. In this study, we analyzed 1,600 (1,352 nonredundant) complete double-stranded DNA viral genomes (10 to 211 kb) assembled from 52 marine viromes. Together with 244 previously reported uncultured viral genomes, a genome-wide comparison delineated 617 genus-level operational taxonomic units (OTUs) for these environmental viral genomes (EVGs). Of these, 600 OTUs contained no representatives from known viruses, thus putatively corresponding to novel viral genera. Predicted hosts of the EVGs included major groups of marine prokaryotes, such as marine group II Euryarchaeota and SAR86, from which no viruses have been isolated to date, as well as Flavobacteriaceae and SAR116. Our analysis indicates that marine cyanophages are already well represented in genome databases and that one of the EVGs likely represents a new cyanophage lineage. Several EVGs encode many enzymes that appear to function for an efficient utilization of iron-sulfur clusters or to enhance host survival. This suggests that there is a selection pressure on these marine viruses to accumulate genes for specific viral propagation strategies. Finally, we revealed that EVGs contribute to a 4-fold increase in the recruitment of photic-zone viromes compared with the use of current reference viral genomes. IMPORTANCE Viruses are diverse and play significant ecological roles in marine ecosystems. However, our knowledge of genome-level diversity in viruses is biased toward those isolated from few culturable hosts. Here, we determined 1,352 nonredundant complete viral genomes from marine environments. Lifting the uncertainty that clouds short incomplete sequences, whole-genome-wide analysis suggests that these environmental genomes represent hundreds of putative novel viral genera. Predicted hosts include dominant groups of marine bacteria and archaea with no isolated viruses to date. Some of the viral genomes encode many functionally related enzymes, suggesting a strong selection pressure on these marine viruses to control cellular metabolisms by accumulating genes.

17.
Nat Commun ; 7: 11071, 2016 Mar 22.
Article in English | MEDLINE | ID: mdl-27002549

ABSTRACT

The unicellular cyanobacterium UCYN-A, one of the major contributors to nitrogen fixation in the open ocean, lives in symbiosis with single-celled phytoplankton. UCYN-A includes several closely related lineages whose partner fidelity, genome-wide expression and time of evolutionary divergence remain to be resolved. Here we detect and distinguish UCYN-A1 and UCYN-A2 lineages in symbiosis with two distinct prymnesiophyte partners in the South Atlantic Ocean. Both symbiotic systems are lineage specific and differ in the number of UCYN-A cells involved. Our analyses infer a streamlined genome expression towards nitrogen fixation in both UCYN-A lineages. Comparative genomics reveal a strong purifying selection in UCYN-A1 and UCYN-A2 with a diversification process ∼91 Myr ago, in the late Cretaceous, after the low-nutrient regime period occurred during the Jurassic. These findings suggest that UCYN-A diversified in a co-evolutionary process, wherein their prymnesiophyte partners acted as a barrier driving an allopatric speciation of extant UCYN-A lineages.


Subject(s)
Biological Evolution , Cyanobacteria/genetics , Haptophyta/genetics , Nitrogen Fixation , Phytoplankton/genetics , Seawater/microbiology , Symbiosis , Atlantic Ocean , Genomics
18.
Viruses ; 8(3): 66, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26938550

ABSTRACT

Environmental genomics can describe all forms of organisms--cellular and viral--present in a community. The analysis of such eco-systems biology data relies heavily on reference databases, e.g., taxonomy or gene function databases. Reference databases of symbiosis sensu lato, although essential for the analysis of organism interaction networks, are lacking. By mining existing databases and literature, we here provide a comprehensive and manually curated database of taxonomic links between viruses and their cellular hosts.


Subject(s)
Computational Biology/methods , Databases, Factual , Databases, Genetic , Host-Pathogen Interactions , Symbiosis , Virus Physiological Phenomena
19.
Nature ; 532(7600): 465-470, 2016 Apr 28.
Article in English | MEDLINE | ID: mdl-26863193

ABSTRACT

The biological carbon pump is the process by which CO2 is transformed to organic carbon via photosynthesis, exported through sinking particles, and finally sequestered in the deep ocean. While the intensity of the pump correlates with plankton community composition, the underlying ecosystem structure driving the process remains largely uncharacterized. Here we use environmental and metagenomic data gathered during the Tara Oceans expedition to improve our understanding of carbon export in the oligotrophic ocean. We show that specific plankton communities, from the surface and deep chlorophyll maximum, correlate with carbon export at 150 m and highlight unexpected taxa such as Radiolaria and alveolate parasites, as well as Synechococcus and their phages, as lineages most strongly associated with carbon export in the subtropical, nutrient-depleted, oligotrophic ocean. Additionally, we show that the relative abundance of a few bacterial and viral genes can predict a significant fraction of the variability in carbon export in these regions.


Subject(s)
Aquatic Organisms/metabolism , Carbon/metabolism , Ecosystem , Plankton/metabolism , Seawater/chemistry , Aquatic Organisms/genetics , Aquatic Organisms/isolation & purification , Chlorophyll/metabolism , Dinoflagellida/genetics , Dinoflagellida/isolation & purification , Dinoflagellida/metabolism , Expeditions , Genes, Bacterial , Genes, Viral , Geography , Oceans and Seas , Photosynthesis , Plankton/genetics , Plankton/isolation & purification , Seawater/microbiology , Seawater/parasitology , Synechococcus/genetics , Synechococcus/isolation & purification , Synechococcus/metabolism , Synechococcus/virology
20.
ISME J ; 10(5): 1134-46, 2016 May.
Article in English | MEDLINE | ID: mdl-26613339

ABSTRACT

Genes encoding reverse transcriptases (RTs) are found in most eukaryotes, often as a component of retrotransposons, as well as in retroviruses and in prokaryotic retroelements. We investigated the abundance, classification and transcriptional status of RTs based on Tara Oceans marine metagenomes and metatranscriptomes encompassing a wide organism size range. Our analyses revealed that RTs predominate large-size fraction metagenomes (>5 µm), where they reached a maximum of 13.5% of the total gene abundance. Metagenomic RTs were widely distributed across the phylogeny of known RTs, but many belonged to previously uncharacterized clades. Metatranscriptomic RTs showed distinct abundance patterns across samples compared with metagenomic RTs. The relative abundances of viral and bacterial RTs among identified RT sequences were higher in metatranscriptomes than in metagenomes and these sequences were detected in all metatranscriptome size fractions. Overall, these observations suggest an active proliferation of various RT-assisted elements, which could be involved in genome evolution or adaptive processes of plankton assemblage.


Subject(s)
Metagenome , Plankton/enzymology , Plankton/genetics , RNA-Directed DNA Polymerase/genetics , Seawater/microbiology , Eukaryota/enzymology , Eukaryota/genetics , Eukaryota/isolation & purification , Phylogeny , Plankton/metabolism , Prokaryotic Cells/enzymology , Prokaryotic Cells/metabolism , RNA-Directed DNA Polymerase/metabolism , Retroelements , Seawater/virology , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...