Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Exp Cell Res ; 317(15): 2159-70, 2011 Sep 10.
Article in English | MEDLINE | ID: mdl-21723279

ABSTRACT

In keratinocytes the human Bag-1 gene produces three different protein isoforms from a single messenger RNA, BAG-1L, BAG-1M and BAG-1S. In this study we questioned whether BAG-1L or the shorter isoforms would promote keratinocyte differentiation in organotypic cultures of HaCaT. HaCaT parental and vector cells showed stratification, but terminal differentiation was not complete. Cultures overexpressing BAG-1L isoform-specifically were of increased thickness, demonstrated pronounced expression of basal cytokeratin 5 and ß1-integrin, suprabasal involucrin, cytokeratin 1 and plasma membrane-localised filaggrin, and a marked keratinized layer of cells at the surface. We were unable to overexpress BAG-1S and BAG-1M isoform-specifically. Overexpression of BAG-1M gave rise to organotypic cultures intermediate in differentiation to controls and those overexpressing BAG-1L. Cells overexpressing BAG-1S also exhibited elevated endogenous BAG-1. These produced slow growing cultures with high levels of basal cytokeratin 5, but little involucrin or cytokeratin 1. Suprabasal ß1-integrin and Ki67 positive cells indicated defective stratification. The results suggest that BAG-1L potentiates epidermal differentiation, but disruption in the relative balance of isoforms towards overexpression of BAG-1S can lead to defective tissue patterning. Hence, a delicate balance of BAG-1 isoforms may be required to regulate normal epidermal stratification and differentiation, with important implications for aberrant differentiation in cancer.


Subject(s)
Cell Differentiation , DNA-Binding Proteins/metabolism , Keratinocytes/cytology , Transcription Factors/metabolism , Animals , Cells, Cultured , Filaggrin Proteins , Humans , Integrin beta Chains/metabolism , Keratinocytes/metabolism , Organ Culture Techniques , Protein Isoforms/metabolism , Rats , Transfection
2.
Exp Cell Res ; 316(13): 2042-60, 2010 Aug 01.
Article in English | MEDLINE | ID: mdl-20430025

ABSTRACT

Cell motility is important in maintaining tissue homeostasis, facilitating epithelial wound repair and in tumour formation and progression. The aim of this study was to determine whether BAG-1 isoforms regulate epidermal cell migration in in vitro models of wound healing. In the human epidermal cell line HaCaT, endogenous BAG-1 is primarily nuclear and increases with confluence. Both transient and stable p36-Bag-1 overexpression resulted in increased cellular cohesion. Stable transfection of either of the three human BAG-1 isoforms p36-Bag-1 (BAG-1S), p46-Bag-1 (BAG-1M) and p50-Bag-1 (BAG-1L) inhibited growth and wound closure in serum-containing medium. However, in response to hepatocyte growth factor (HGF) in serum-free medium, BAG-1S/M reduced communal motility and colony scattering, but BAG-1L did not. In the presence of HGF, p36-Bag-1 transfectants retained proliferative response to HGF with no change in ERK1/2 activation. However, the cells retained E-cadherin localisation at cell-cell junctions and exhibited pronounced cortical actin. Point mutations in the BAG domain showed that BAG-1 inhibition of motility is independent of its function as a chaperone regulator. These findings are the first to suggest that BAG-1 plays a role in regulating cell-cell adhesion and suggest an important function in epidermal cohesion.


Subject(s)
Cell Adhesion/physiology , Cell Movement/physiology , Cell Proliferation , Chaperonins/physiology , DNA-Binding Proteins/physiology , Hepatocyte Growth Factor/pharmacology , Keratinocytes/cytology , Transcription Factors/physiology , Blotting, Western , Cells, Cultured , Epidermal Cells , HSC70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , Humans , Immunoenzyme Techniques , Keratinocytes/drug effects , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL