Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Polym Mater ; 6(1): 457-465, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38230364

ABSTRACT

Single-oxygen-containing branched side chains are designed and used to solubilize n-type copolymers consisting of BDF (benzodifuranone), isatin, and thiophene-based units. We present a simple synthetic approach to side chains with varying linker distances between the backbone and the branching point. The synthetic pathway is straightforward and modular and starts with commercially available reagents. The side chains give rise to excellent solubilities of BDF-thiophene copolymers of up to 90 mg/mL, while still being moderate in size (26-34 atoms large). The excellent solubility furthermore allows high molar mass materials. BDF-thiophene copolymers are characterized in terms of optoelectronic and thermoelectric properties. The electrical conductivity of chemically doped polymers is found to scale with molar mass, reaching ∼1 S/cm for the highest molar mass and longest backbone-branching point distance.

2.
Fac Rev ; 10: 2, 2021.
Article in English | MEDLINE | ID: mdl-33659921

ABSTRACT

Neoadjuvant trials for early breast cancer have accelerated the identification of novel active agents, enabling streamlined conduct of registration trials with fewer subjects. Measurement of neoadjuvant drug effects has also enabled the identification of patients with high risk of distant recurrence and has justified development of additional adjuvant approaches to improve outcomes. Neoadjuvant evaluation of new drugs was significantly improved by the introduction of pathologic complete response (pCR) rate as a quantitative surrogate endpoint for distant disease-free survival (DDFS) and event free survival (EFS). The neoadjuvant phase 2 platform trial I-SPY 2 simultaneously tests multiple drugs across multiple breast cancer subtypes using Bayesian methods of adaptive randomization for assessment of drug efficacy. In addition to the pCR endpoint, the I-SPY 2 trial has demonstrated that the residual cancer burden (RCB) score measures gradations of tumor response that correlate with DDFS and EFS across treatments and subtypes. For HER2-positive and triple-negative breast cancers that have failed to attain pCR with neoadjuvant chemotherapy (NAC), effective modifications of adjuvant treatment have improved outcomes and changed the standard of care for these subtypes. Neoadjuvant therapy is therefore preferred for stage II and III, as well as some stage I, HER2-positive and triple-negative tumors. Neoadjuvant endocrine therapy (NET) strategies have also emerged from innovative trials for stage II and III estrogen receptor (ER)-positive/HER2-negative tumors, as in the ALTERNATE trial. From neoadjuvant trials, opportunities have emerged to de-escalate therapy on the basis of metrics of response to chemotherapy or hormonal therapy. Neoadjuvant therapy for early breast cancer is therefore emerging as a promising approach to accelerate new drug development, optimize treatment strategies, and (where appropriate) de-escalate neoadjuvant therapy.

3.
Cancer Metastasis Rev ; 37(2-3): 409-423, 2018 09.
Article in English | MEDLINE | ID: mdl-30066055

ABSTRACT

While cytochrome P450 (CYP)-mediated biosynthesis of arachidonic acid (AA) epoxides promotes tumor growth by driving angiogenesis, cancer cell intrinsic functions of CYPs are less understood. CYP-derived AA epoxides, called epoxyeicosatrienoic acids (EETs), also promote the growth of tumor epithelia. In cancer cells, CYP AA epoxygenase enzymes are associated with STAT3 and mTOR signaling, but also localize in mitochondria, where they promote the electron transport chain (ETC). Recently, the diabetes drug metformin was found to inhibit CYP AA epoxygenase activity, allowing the design of more potent biguanides to target tumor growth. Biguanide inhibition of EET synthesis suppresses STAT3 and mTOR pathways, as well as the ETC. Convergence of biguanide activity and eicosanoid biology in cancer has shown a new pathway to attack cancer metabolism and provides hope for improved treatments that target this vulnerability. Inhibition of EET-mediated cancer metabolism and angiogenesis therefore provides a dual approach for targeted cancer therapeutics.


Subject(s)
Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Autophagy/drug effects , Autophagy/genetics , Clinical Trials as Topic , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Cytochrome P-450 Enzyme Inhibitors/therapeutic use , Drug Discovery , Drug Interactions , Drug Repositioning , Electron Transport Chain Complex Proteins/genetics , Electron Transport Chain Complex Proteins/metabolism , Humans , Mitochondria/drug effects , Molecular Targeted Therapy , Neoplasms/drug therapy , Neoplasms/pathology , Signal Transduction/drug effects , Treatment Outcome , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...