Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sensors (Basel) ; 18(1)2017 Dec 24.
Article in English | MEDLINE | ID: mdl-29295540

ABSTRACT

Although saline tidal wetlands cover less than a fraction of one percent of the earth's surface (~0.01%), they efficiently sequester organic carbon due to high rates of primary production coupled with surfaces that aggrade in response to sea level rise. Here, we report on multi-decadal changes (1972-2008) in the extent of tidal marshes and mangroves, and characterize soil carbon density and source, for five regions of tidal wetlands located on Baja California's Pacific coast. Land-cover change analysis indicates the stability of tidal wetlands relative to anthropogenic and climate change impacts over the past four decades, with most changes resulting from natural coastal processes that are unique to arid environments. The disturbance of wetland soils in this region (to a depth of 50 cm) would liberate 2.55 Tg of organic carbon (C) or 9.36 Tg CO2eq. Based on stoichiometry and carbon stable isotope ratios, the source of organic carbon in these wetland sediments is derived from a combination of wetland macrophyte, algal, and phytoplankton sources. The reconstruction of natural wetland dynamics in Baja California provides a counterpoint to the history of wetland destruction elsewhere in North America, and measurements provide new insights on the control of carbon sequestration in arid wetlands.

2.
Science ; 335(6069): 702-5, 2012 Feb 10.
Article in English | MEDLINE | ID: mdl-22323817

ABSTRACT

Large [moment magnitude (M(w)) ≥ 7] continental earthquakes often generate complex, multifault ruptures linked by enigmatic zones of distributed deformation. Here, we report the collection and results of a high-resolution (≥nine returns per square meter) airborne light detection and ranging (LIDAR) topographic survey of the 2010 M(w) 7.2 El Mayor-Cucapah earthquake that produced a 120-kilometer-long multifault rupture through northernmost Baja California, Mexico. This differential LIDAR survey completely captures an earthquake surface rupture in a sparsely vegetated region with pre-earthquake lower-resolution (5-meter-pixel) LIDAR data. The postevent survey reveals numerous surface ruptures, including previously undocumented blind faults within thick sediments of the Colorado River delta. Differential elevation changes show distributed, kilometer-scale bending strains as large as ~10(3) microstrains in response to slip along discontinuous faults cutting crystalline bedrock of the Sierra Cucapah.

SELECTION OF CITATIONS
SEARCH DETAIL