Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
2.
Pituitary ; 26(6): 660-674, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37747600

ABSTRACT

PURPOSE: Growth hormone receptor knockout (GHR-KO) pigs have recently been developed, which serve as a large animal model of Laron syndrome (LS). GHR-KO pigs, like individuals with LS, are obese but lack some comorbidities of obesity. The purpose of this study was to examine the histological and transcriptomic phenotype of adipose tissue (AT) in GHR-KO pigs and humans with LS. METHODS: Intraabdominal (IA) and subcutaneous (SubQ) AT was collected from GHR-KO pigs and examined histologically for adipocyte size and collagen content. RNA was isolated and cDNA sequenced, and the results were analyzed to determine differentially expressed genes that were used for enrichment and pathway analysis in pig samples. For comparison, we also performed limited analyses on human AT collected from a single individual with and without LS. RESULTS: GHR-KO pigs have increased adipocyte size, while the LS AT had a trend towards an increase. Transcriptome analysis revealed 55 differentially expressed genes present in both depots of pig GHR-KO AT. Many significant terms in the enrichment analysis of the SubQ depot were associated with metabolism, while in the IA depot, IGF and longevity pathways were negatively enriched. In pathway analysis, multiple expected and novel pathways were significantly affected by genotype, i.e. KO vs. controls. When GH related gene expression was analyzed, SOCS3 and CISH showed species-specific changes. CONCLUSION: AT of GHR-KO pigs has several similarities to that of humans with LS in terms of adipocyte size and gene expression profile that help describe the depot-specific adipose phenotype of both groups.


Subject(s)
Obesity , Receptors, Somatotropin , Humans , Animals , Swine , Obesity/genetics , Receptors, Somatotropin/genetics , Receptors, Somatotropin/metabolism , Adipose Tissue/metabolism , Growth Hormone/metabolism , Gene Expression Profiling , Insulin-Like Growth Factor I/metabolism
3.
Biomolecules ; 13(4)2023 03 26.
Article in English | MEDLINE | ID: mdl-37189345

ABSTRACT

Laron syndrome (LS) is a rare genetic disorder characterized by low levels of insulin-like growth factor 1 (IGF1) and high levels of growth hormone (GH) due to mutations in the growth hormone receptor gene (GHR). A GHR-knockout (GHR-KO) pig was developed as a model for LS, which displays many of the same features as humans with LS-like transient juvenile hypoglycemia. This study aimed to investigate the effects of impaired GHR signaling on immune functions and immunometabolism in GHR-KO pigs. GHR are located on various cell types of the immune system. Therefore, we investigated lymphocyte subsets, proliferative and respiratory capacity of peripheral blood mononuclear cells (PBMCs), proteome profiles of CD4- and CD4+ lymphocytes and IFN-α serum levels between wild-type (WT) controls and GHR-KO pigs, which revealed significant differences in the relative proportion of the CD4+CD8α- subpopulation and in IFN-α levels. We detected no significant difference in the respiratory capacity and the capacity for polyclonal stimulation in PBMCs between the two groups. But proteome analysis of CD4+ and CD4- lymphocyte populations revealed multiple significant protein abundance differences between GHR-KO and WT pigs, involving pathways related to amino acid metabolism, beta-oxidation of fatty acids, insulin secretion signaling, and oxidative phosphorylation. This study highlights the potential use of GHR-KO pigs as a model for studying the effects of impaired GHR signaling on immune functions.


Subject(s)
Laron Syndrome , Receptors, Somatotropin , Humans , Animals , Swine , Receptors, Somatotropin/genetics , Receptors, Somatotropin/metabolism , Laron Syndrome/genetics , Laron Syndrome/metabolism , Leukocytes, Mononuclear/metabolism , Proteome , Growth Hormone/metabolism
4.
J Neuroendocrinol ; : e13277, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-37160285

ABSTRACT

Growth hormone receptor deficiency (GHRD) results in low serum insulin-like growth factor 1 (IGF1) and high, but non-functional serum growth hormone (GH) levels in human Laron syndrome (LS) patients and animal models. This study investigated the quantitative histomorphological and molecular alterations associated with GHRD. Pituitary glands from 6 months old growth hormone receptor deficient (GHR-KO) and control pigs were analyzed using a quantitative histomorphological approach in paraffin (9 GHR-KO [5 males, 4 females] vs. 11 controls [5 males, 6 females]), ultrathin sections tissue sections (3 male GHR-KO vs. 3 male controls) and label-free proteomics (4 GHR-KO vs. 4 control pigs [2 per sex]). GHR-KO pigs displayed reduced body weights (60% reduction in comparison to controls; p < .0001) and decreased pituitary volumes (54% reduction in comparison to controls; p < .0001). The volume proportion of the adenohypophysis did not differ in GHR-KO and control pituitaries (65% vs. 71%; p = .0506) and GHR-KO adenohypophyses displayed a reduced absolute volume but an unaltered volume density of somatotrophs in comparison to controls (21% vs. 18%; p = .3164). In GHR-KO pigs, somatotroph cells displayed a significantly reduced volume density of granules (23.5%) as compared to controls (67.7%; p < .0001). Holistic proteome analysis of adenohypophysis samples identified 4660 proteins, of which 592 were differentially abundant between the GHR-KO and control groups. In GHR-KO samples, the abundance of somatotropin precursor was decreased, whereas increased abundances of proteins involved in protein production, transport and endoplasmic reticulum (ER) stress were revealed. Increased protein production and secretion as well as significantly reduced proportion of GH-storing granules in somatotroph cells of the adenohypophysis without an increase in volume density of somatotroph cells in the adenohypophysis could explain elevated serum GH levels in GHR-KO pigs.

5.
Dis Model Mech ; 14(12)2021 12 01.
Article in English | MEDLINE | ID: mdl-34796900

ABSTRACT

Large-animal models for Duchenne muscular dystrophy (DMD) are crucial for the evaluation of diagnostic procedures and treatment strategies. Pigs cloned from male cells lacking DMD exon 52 (DMDΔ52) exhibit molecular, clinical and pathological hallmarks of DMD, but die before sexual maturity and cannot be propagated by breeding. Therefore, we generated female DMD+/- carriers. A single founder animal had 11 litters with 29 DMDY/-, 34 DMD+/- as well as 36 male and 29 female wild-type offspring. Breeding with F1 and F2 DMD+/- carriers resulted in an additional 114 DMDY/- piglets. With intensive neonatal management, the majority survived for 3-4 months, providing statistically relevant cohorts for experimental studies. Pathological investigations and proteome studies of skeletal muscles and myocardium confirmed the resemblance to human disease mechanisms. Importantly, DMDY/- pigs displayed progressive myocardial fibrosis and increased expression of connexin-43, associated with significantly reduced left ventricular ejection fraction, at 3 months. Furthermore, behavioral tests provided evidence for impaired cognitive ability. Our breeding cohort of DMDΔ52 pigs and standardized tissue repositories provide important resources for studying DMD disease mechanisms and for testing novel treatment strategies.


Subject(s)
Cardiomyopathies , Muscular Dystrophy, Duchenne , Animals , Cardiomyopathies/pathology , Female , Humans , Male , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/pathology , Stroke Volume , Swine , Ventricular Function, Left
6.
Eur J Endocrinol ; 185(2): R35-R47, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34048365

ABSTRACT

The aim of the study is to find possible explanations for vanishing juvenile hypoglycemia in growth hormone receptor deficiency (GHRD) in human patients and animal models. We reviewed parameters of glucose metabolism in distinct age groups into two human cohorts (Israeli and Ecuadorian) of Laron syndrome (LS) patients, a mouse model (Ghr-KO mouse) and provided additional data for a porcine model (GHR-KO pig). Juvenile hypoglycemia is a common symptom of GHRD and vanishes in adulthood. In the Israeli cohort, developing metabolic syndrome is associated with decreasing insulin sensitivity, insulinopenia and glucose intolerance, and increasing glucose levels with age. In the Ecuadorian patients and both animal models, insulin sensitivity is preserved or even enhanced. Alterations in food intake and energy consumption do not explain the differences in glucose levels; neither is the accumulation of body fat associated with negative effects in the Ecuadorian cohort nor in the animal models. A reduced beta-cell mass and resulting insulin secretory capacity is common and leads to glucose intolerance in Ghr-KO mice, while glucose tolerance is preserved in Ecuadorian patients and the GHR-KO pig. In human patients and the GHR-KO pig, a simultaneous occurrence of normoglycemia with the onset of puberty is reported. Reduced gluconeogenesis in GHRD is discussed to cause juvenile hypoglycemia and a counter-regulatory stimulation of gluconeogenesis can be hypothesized. A coherent study assessing endogenous glucose production and beta-cell capacity in the hypoglycemic and normoglycemic age group is needed. This can be performed in GHR-KO pigs, including castrated animals.


Subject(s)
Hypoglycemia , Laron Syndrome , Age Factors , Animals , Animals, Genetically Modified , Cohort Studies , Disease Models, Animal , Ecuador/epidemiology , Humans , Hypoglycemia/epidemiology , Hypoglycemia/etiology , Hypoglycemia/metabolism , Hypoglycemia/pathology , Israel/epidemiology , Laron Syndrome/complications , Laron Syndrome/epidemiology , Laron Syndrome/metabolism , Laron Syndrome/pathology , Mice , Mice, Knockout , Receptors, Somatotropin/genetics , Signal Transduction/physiology , Swine
7.
Xenotransplantation ; 28(2): e12664, 2021 03.
Article in English | MEDLINE | ID: mdl-33241624

ABSTRACT

BACKGROUND: Many genetically multi-modified donor lines for xenotransplantation have a background of domestic pigs with rapid body and organ growth. The intrinsic growth potential of porcine xeno-organs may impair their long-term function after orthotopic transplantation in non-human primate models. Since growth hormone is a major stimulator of postnatal growth, we deleted its receptor (GHR-KO) to reduce the size of donor pigs in one step. METHODS: Heart weight and proteome profile of myocardium were investigated in GHR-KO and control pigs. GHR-KO mutations were introduced using CRISPR/Cas9 in an α1,3-galactosyltransferase (GGTA1)-deficient background expressing the human cluster of differentiation (hCD46) and human thrombomodulin (hTHBD) to generate quadruple-modified (4GM) pigs. RESULTS: At age 6 months, GHR-KO pigs had a 61% reduced body weight and a 63% reduced heart weight compared with controls. The mean minimal diameter of cardiomyocytes was 28% reduced. A holistic proteome study of myocardium samples from the two groups did not reveal prominent differences. Two 4GM founder sows had low serum insulin-like growth factor 1 (IGF1) levels (24 ± 1 ng/mL) and reached body weights of 70.3 and 73.4 kg at 9 months. Control pigs with IGF1 levels of 228 ± 24 ng/mL reached this weight range three months earlier. The 4GM sows showed normal sexual development and were mated with genetically multi-modified boars. Offspring revealed the expected Mendelian transmission of the genetic modifications and consistent expression of the transgenes. CONCLUSION: GHR-KO donor pigs can be used at an age beyond the steepest phase of their growth curve, potentially reducing the problem of xeno-organ overgrowth in preclinical studies.


Subject(s)
Galactosyltransferases , Receptors, Somatotropin , Animals , Animals, Genetically Modified , Female , Gene Knockout Techniques , Heterografts , Male , Primates , Receptors, Somatotropin/genetics , Sus scrofa , Swine , Transplantation, Heterologous
8.
Anim Reprod ; 17(3): e20200064, 2020 Aug 26.
Article in English | MEDLINE | ID: mdl-33029223

ABSTRACT

The global prevalence of diabetes mellitus and other metabolic diseases is rapidly increasing. Animal models play pivotal roles in unravelling disease mechanisms and developing and testing therapeutic strategies. Rodents are the most widely used animal models but may have limitations in their resemblance to human disease mechanisms and phenotypes. Findings in rodent models are consequently often difficult to extrapolate to human clinical trials. To overcome this 'translational gap', we and other groups are developing porcine disease models. Pigs share many anatomical and physiological traits with humans and thus hold great promise as translational animal models. Importantly, the toolbox for genetic engineering of pigs is rapidly expanding. Human disease mechanisms and targets can therefore be reproduced in pigs on a molecular level, resulting in precise and predictive porcine (PPP) models. In this short review, we summarize our work on the development of genetically (pre)diabetic pig models and how they have been used to study disease mechanisms and test therapeutic strategies. This includes the generation of reporter pigs for studying beta-cell maturation and physiology. Furthermore, genetically engineered pigs are promising donors of pancreatic islets for xenotransplantation. In summary, genetically tailored pig models have become an important link in the chain of translational diabetes and metabolic research.

9.
Hypertension ; 76(6): 1769-1777, 2020 12.
Article in English | MEDLINE | ID: mdl-33070662

ABSTRACT

Primary aldosteronism is a frequent form of endocrine hypertension caused by aldosterone overproduction from the adrenal cortex. Regulation of aldosterone biosynthesis has been studied in rodents despite differences in adrenal physiology with humans. We, therefore, investigated pig adrenal steroidogenesis, morphology, and transcriptome profiles of the zona glomerulosa (zG) and zona fasciculata in response to activation of the renin-angiotensin-aldosterone system by dietary sodium restriction. Six-week-old pigs were fed a low- or high-sodium diet for 14 days (3 pigs per group, 0.4 g sodium/kg feed versus 6.8 g sodium/kg). Plasma aldosterone concentrations displayed a 43-fold increase (P=0.011) after 14 days of sodium restriction (day 14 versus day 0). Low dietary sodium caused a 2-fold increase in thickness of the zG (P<0.001) and an almost 3-fold upregulation of CYP11B (P<0.05) compared with high dietary sodium. Strong immunostaining of the KCNJ5 (G protein-activated inward rectifier potassium channel 4), which is frequently mutated in primary aldosteronism, was demonstrated in the zG. mRNA sequencing transcriptome analysis identified significantly altered expression of genes modulated by the renin-angiotensin-aldosterone system in the zG (n=1172) and zona fasciculata (n=280). These genes included many with a known role in the regulation of aldosterone synthesis and adrenal function. The most highly enriched biological pathways in the zG were related to cholesterol biosynthesis, steroid metabolism, cell cycle, and potassium channels. This study provides mechanistic insights into the physiology and pathophysiology of aldosterone production in a species closely related to humans and shows the suitability of pigs as a translational animal model for human adrenal steroidogenesis.


Subject(s)
Adrenal Cortex/drug effects , Diet, Sodium-Restricted/methods , Sodium, Dietary/pharmacology , Steroids/metabolism , Transcriptome/drug effects , Adrenal Cortex/metabolism , Aldosterone/metabolism , Animals , Cytochrome P-450 CYP1B1/genetics , Cytochrome P-450 CYP1B1/metabolism , G Protein-Coupled Inwardly-Rectifying Potassium Channels/genetics , G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism , Humans , Male , Renin-Angiotensin System/drug effects , Renin-Angiotensin System/genetics , Sodium, Dietary/administration & dosage , Sodium, Dietary/metabolism , Swine , Transcriptome/genetics , Zona Fasciculata/drug effects , Zona Fasciculata/metabolism , Zona Glomerulosa/drug effects , Zona Glomerulosa/metabolism
10.
Mol Metab ; 36: 100978, 2020 06.
Article in English | MEDLINE | ID: mdl-32277923

ABSTRACT

OBJECTIVE: The liver is a central target organ of growth hormone (GH), which stimulates the synthesis of insulin-like growth factor 1 (IGF1) and affects multiple biochemical pathways. A systematic multi-omics analysis of GH effects in the liver has not been performed. GH receptor (GHR) deficiency is a unique model for studying the consequences of lacking GH action. In this study, we used molecular profiling techniques to capture a broad spectrum of these effects in the liver of a clinically relevant large animal model for Laron syndrome. METHODS: We performed holistic proteome and targeted metabolome analyses of liver samples from 6-month-old GHR-deficient (GHR-KO) pigs and GHR-expressing controls (four males, four females per group). RESULTS: GHR deficiency resulted in an increased abundance of enzymes involved in amino acid degradation, in the urea cycle, and in the tricarboxylic acid cycle. A decreased ratio of long-chain acylcarnitines to free carnitine suggested reduced activity of carnitine palmitoyltransferase 1A and thus reduced mitochondrial import of fatty acids for beta-oxidation. Increased levels of short-chain acylcarnitines in the liver and in the circulation of GHR-KO pigs may result from impaired beta-oxidation of short-chain fatty acids or from increased degradation of specific amino acids. The concentration of mono-unsaturated glycerophosphocholines was significantly increased in the liver of GHR-KO pigs without morphological signs of steatosis, although the abundances of several proteins functionally linked to non-alcoholic fatty liver disease (fetuin B, retinol binding protein 4, several mitochondrial proteins) were increased. Moreover, GHR-deficient liver samples revealed distinct changes in the methionine and glutathione metabolic pathways, in particular, a significantly increased level of glycine N-methyltransferase and increased levels of total and free glutathione. Several proteins revealed a sex-related abundance difference in the control group but not in the GHR-KO group. CONCLUSIONS: Our integrated proteomics/targeted metabolomics study of GHR-deficient and control liver samples from a clinically relevant large animal model identified a spectrum of biological pathways that are significantly altered in the absence of GH action. Moreover, new insights into the role of GH in the sex-related specification of liver functions were provided.


Subject(s)
Growth Hormone/metabolism , Liver/physiology , Receptors, Somatotropin/metabolism , Animals , Female , Gene Knockout Techniques/methods , Growth Hormone/physiology , Laron Syndrome , Male , Metabolomics/methods , Models, Animal , Non-alcoholic Fatty Liver Disease/metabolism , Protein Binding , Protein Transport , Proteomics/methods , Receptors, Somatotropin/genetics , Receptors, Somatotropin/physiology , Signal Transduction , Swine
11.
Dis Model Mech ; 12(8)2019 08 12.
Article in English | MEDLINE | ID: mdl-31308048

ABSTRACT

Alongside the obesity epidemic, the prevalence of maternal diabetes is rising worldwide, and adverse effects on fetal development and metabolic disturbances in the offspring's later life have been described. To clarify whether metabolic programming effects are due to mild maternal hyperglycemia without confounding obesity, we investigated wild-type offspring of INSC93S transgenic pigs, which are a novel genetically modified large-animal model expressing mutant insulin (INS) C93S in pancreatic ß-cells. This mutation results in impaired glucose tolerance, mild fasting hyperglycemia and insulin resistance during late pregnancy. Compared with offspring from wild-type sows, piglets from hyperglycemic mothers showed impaired glucose tolerance and insulin resistance (homeostatic model assessment of insulin resistance: +3-fold in males; +4.4-fold in females) prior to colostrum uptake. Targeted metabolomics in the fasting and insulin-stimulated state revealed distinct alterations in the plasma metabolic profile of piglets from hyperglycemic mothers. They showed increased levels of acylcarnitines, gluconeogenic precursors such as alanine, phospholipids (in particular lyso-phosphatidylcholines) and α-aminoadipic acid, a potential biomarker for type 2 diabetes. These observations indicate that mild gestational hyperglycemia can cause impaired glucose tolerance, insulin resistance and associated metabolic alterations in neonatal offspring of a large-animal model born at a developmental maturation status comparable to human babies.


Subject(s)
Glucose Intolerance/etiology , Hyperglycemia/etiology , Insulin/genetics , Prenatal Exposure Delayed Effects/pathology , Animals , Animals, Genetically Modified , Animals, Newborn , Female , Insulin Secretion , Insulin-Secreting Cells/metabolism , Pregnancy , Swine
12.
Mol Metab ; 11: 113-128, 2018 05.
Article in English | MEDLINE | ID: mdl-29678421

ABSTRACT

OBJECTIVE: Laron syndrome (LS) is a rare, autosomal recessive disorder in humans caused by loss-of-function mutations of the growth hormone receptor (GHR) gene. To establish a large animal model for LS, pigs with GHR knockout (KO) mutations were generated and characterized. METHODS: CRISPR/Cas9 technology was applied to mutate exon 3 of the GHR gene in porcine zygotes. Two heterozygous founder sows with a 1-bp or 7-bp insertion in GHR exon 3 were obtained, and their heterozygous F1 offspring were intercrossed to produce GHR-KO, heterozygous GHR mutant, and wild-type pigs. Since the latter two groups were not significantly different in any parameter investigated, they were pooled as the GHR expressing control group. The characterization program included body and organ growth, body composition, endocrine and clinical-chemical parameters, as well as signaling studies in liver tissue. RESULTS: GHR-KO pigs lacked GHR and had markedly reduced serum insulin-like growth factor 1 (IGF1) levels and reduced IGF-binding protein 3 (IGFBP3) activity but increased IGFBP2 levels. Serum GH concentrations were significantly elevated compared with control pigs. GHR-KO pigs had a normal birth weight. Growth retardation became significant at the age of five weeks. At the age of six months, the body weight of GHR-KO pigs was reduced by 60% compared with controls. Most organ weights of GHR-KO pigs were reduced proportionally to body weight. However, the weights of liver, kidneys, and heart were disproportionately reduced, while the relative brain weight was almost doubled. GHR-KO pigs had a markedly increased percentage of total body fat relative to body weight and displayed transient juvenile hypoglycemia along with decreased serum triglyceride and cholesterol levels. Analysis of insulin receptor related signaling in the liver of adult fasted pigs revealed increased phosphorylation of IRS1 and PI3K. In agreement with the loss of GHR, phosphorylation of STAT5 was significantly reduced. In contrast, phosphorylation of JAK2 was significantly increased, possibly due to the increased serum leptin levels and increased hepatic leptin receptor expression and activation in GHR-KO pigs. In addition, increased mTOR phosphorylation was observed in GHR-KO liver samples, and phosphorylation studies of downstream substrates suggested the activation of mainly mTOR complex 2. CONCLUSION: GHR-KO pigs resemble the pathophysiology of LS and are an interesting model for mechanistic studies and treatment trials.


Subject(s)
Laron Syndrome/genetics , Liver/metabolism , Receptors, Somatotropin/genetics , Signal Transduction , Adiposity , Animals , Body Weight , Growth Hormone/blood , Insulin-Like Growth Factor Binding Protein 2/metabolism , Insulin-Like Growth Factor Binding Protein 3/metabolism , Insulin-Like Growth Factor I/metabolism , Janus Kinase 2/metabolism , Laron Syndrome/physiopathology , Mechanistic Target of Rapamycin Complex 2/metabolism , Receptors, Somatotropin/deficiency , STAT5 Transcription Factor/metabolism , Swine
13.
Mol Metab ; 6(8): 931-940, 2017 08.
Article in English | MEDLINE | ID: mdl-28752056

ABSTRACT

OBJECTIVE: The prevalence of diabetes mellitus and associated complications is steadily increasing. As a resource for studying systemic consequences of chronic insulin insufficiency and hyperglycemia, we established a comprehensive biobank of long-term diabetic INSC94Y transgenic pigs, a model of mutant INS gene-induced diabetes of youth (MIDY), and of wild-type (WT) littermates. METHODS: Female MIDY pigs (n = 4) were maintained with suboptimal insulin treatment for 2 years, together with female WT littermates (n = 5). Plasma insulin, C-peptide and glucagon levels were regularly determined using specific immunoassays. In addition, clinical chemical, targeted metabolomics, and lipidomics analyses were performed. At age 2 years, all pigs were euthanized, necropsied, and a broad spectrum of tissues was taken by systematic uniform random sampling procedures. Total beta cell volume was determined by stereological methods. A pilot proteome analysis of pancreas, liver, and kidney cortex was performed by label free proteomics. RESULTS: MIDY pigs had elevated fasting plasma glucose and fructosamine concentrations, C-peptide levels that decreased with age and were undetectable at 2 years, and an 82% reduced total beta cell volume compared to WT. Plasma glucagon and beta hydroxybutyrate levels of MIDY pigs were chronically elevated, reflecting hallmarks of poorly controlled diabetes in humans. In total, ∼1900 samples of different body fluids (blood, serum, plasma, urine, cerebrospinal fluid, and synovial fluid) as well as ∼17,000 samples from ∼50 different tissues and organs were preserved to facilitate a plethora of morphological and molecular analyses. Principal component analyses of plasma targeted metabolomics and lipidomics data and of proteome profiles from pancreas, liver, and kidney cortex clearly separated MIDY and WT samples. CONCLUSIONS: The broad spectrum of well-defined biosamples in the Munich MIDY Pig Biobank that will be available to the scientific community provides a unique resource for systematic studies of organ crosstalk in diabetes in a multi-organ, multi-omics dimension.


Subject(s)
Body Fluids , Diabetes Mellitus, Type 2/genetics , Disease Models, Animal , Insulin/genetics , Swine/genetics , Tissue Banks , Animals , Diabetes Mellitus, Type 2/pathology , Diabetes Mellitus, Type 2/veterinary , Female , Germany
SELECTION OF CITATIONS
SEARCH DETAIL
...