Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem C Nanomater Interfaces ; 125(48): 26635-26644, 2021 Dec 09.
Article in English | MEDLINE | ID: mdl-34917227

ABSTRACT

The presented work shows a synthesis route to obtain nanoparticles of the hexagonal α-NiS phase and core-shell particles where the same material is grown onto previously prepared Au seeds. In the bulk, this nickel sulfide phase is known to exhibit a metal-insulator type phase transition (MIT) at 265 K which drastically alters its electrical conductivity. Since the produced nanoparticles show a localized surface plasmon resonance (LSPR) in the visible range of the electromagnetic spectrum, the development of their optical properties depending on the temperature is investigated. This is the first time an LSPR of colloidal nanoparticles is monitored regarding such a transition. The results of UV-vis absorbance measurements show that the LSPR of the particles can be strongly and reversibly tuned by varying the temperature. It can be switched off by cooling the nanoparticles and switched on again by reheating them above the transition temperature. Additional to the phase transition, the temperature-dependent magnetic susceptibility of α-NiS and Au-NiS nanoparticles suggests the presence of different amounts of uncompensated magnetic moments in these compounds that possibly affect the optical properties and may cause the observed quantitative differences in the LSPR response of these materials.

2.
Nanoscale ; 11(32): 15104-15111, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31367715

ABSTRACT

A dependence of the formation of tri-n-octylphosphine-capped Ni nanocrystals on the presence of halide ions during their synthesis is shown. For the application-oriented synthesis of Ni particles, this information can be crucial. Furthermore, Ni nanoparticles can be converted to nickel phosphide or sulphide by heating them up in the presence of a phosphorus or sulphur source, resulting in either solid or hollow nanocrystals, formed via the nanoscale Kirkendall effect, depending on the synthesis route. By adjusting the Ni crystallite size in the initial nanoparticles via the halide ion concentration the cavity size of the resulting hollow nanocrystals can be tuned, which is otherwise impossible to realise for particles of a similar total diameter by using this process. The synthesised hollow Ni3S2 nanocrystals exhibit a much sharper localised surface plasmon resonance (LSPR) band than all previously presented particles of this material, which is known to show molar extinction coefficients at the LSPR maximum similar to Au. This narrow linewidth could be explained by the nanoparticles' high crystallinity resulting from the Kirkendall process and is interesting for various possible optical applications such as surface-enhanced Raman spectroscopy owing to the low cost of the involved materials compared to the widely used noble metals.

3.
Angew Chem Int Ed Engl ; 57(25): 7434-7439, 2018 06 18.
Article in English | MEDLINE | ID: mdl-29532985

ABSTRACT

Co-MOF-74 rod like crystals with a length of several hundred micrometers are synthesized by a solvothermal procedure and their interaction with different gases is evaluated for selective gas sensing. We show strongly anisotropic absorption behavior of the Co-MOF-74 crystals when illuminated with polarized light. The interactions of guests (CO2 , propane, propene, Ar, MeOH, H2 O) with Co-MOF-74, is studied by various spectroscopic techniques. Vis/NIR shows peak shifts of Co-MOF-74 depending on the interaction with the guest. In the visible and the NIR the maximum absorbance is shifted selectively corresponding to the intensity of the CoII -guest interaction. Even propene and propane could be distinguished at room temperature by their different interactions with Co-MOF-74. Raman spectroscopy was used to detect a modified vibrational behavior of Co-MOF-74 upon gas adsorption. We show that the adsorption of H2 O leads to a characteristic shift of the peak maxima in the Raman spectra.

4.
Small ; 12(19): 2588-94, 2016 05.
Article in English | MEDLINE | ID: mdl-27031048

ABSTRACT

A synthetic route to prepare metal-semiconductor hybrid nanoparticles is presented, along with the possibility to tune the ratio of primary to secondary nucleation and the morphology of the semiconductor material grown on the metal nanoparticle seeds. Gold and cobalt-platinum nanoparticles are employed as metal seeds, on which CdS or CdSe is grown. Using transmission electron microscopy, absorption spectroscopy (UV-vis), and powder X-ray diffraction as characterization techniques, a significant influence of chloride ions on the type of nucleation (that is, secondary or primary nucleation) as well as on the shape of the resulting heterostructures is observed. Partially replacing the commonly used cadmium precursor CdO by varying amounts of CdCl2 opens access to rod-like, multiarmed, flower-like, and bullet-like structures. The results suggest that neither pure CdO nor pure CdCl2 as precursors but only a mixture of both make these structures obtainable. In this article, the influence of the chloride ion concentration during semiconductor growth on metal seeds is investigated in depth. The morphology of the resulting heterostructures is characterized carefully, and a growth mechanism is suggested. Furthermore, it is shown that this synthetic approach can be transferred to seeds of various metals such as platinum, gold, and cobalt platinum.

5.
Chemphyschem ; 17(5): 717-23, 2016 Mar 03.
Article in English | MEDLINE | ID: mdl-26604183

ABSTRACT

We report the synthesis of plasmonic Cu2-x Se@ZnS core@shell nanoparticles (NPs). We used a shell growth approach, starting from Cu2-x Se NPs that have been shown before to exhibit a localized surface plasmon resonance (LSPR). By careful synthesis planning we avoided cation exchange reactions and received core@shell nanoparticles that, after oxidation under air, exhibit a strong LSPR in the NIR. Interestingly, the crystalline, closed ZnS shell that we grew with variable thickness still allowed a slow oxidation of the core under ambient conditions, while the core was effectively protected from reduction, even in the presence of reducing agents such as borane tert-butyamine complex and diisobutylaluminum hydride, giving rise to a stable particle LSPR, also under strongly reducing conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...