Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 8(13): 1525-38, 2006 Apr 07.
Article in English | MEDLINE | ID: mdl-16633637

ABSTRACT

A systematic series of binary and ternary copper catalysts was investigated using the methanol synthesis reaction at atmospheric pressure. Strong metal-support interactions between copper and zinc oxide induced by strongly reducing conditions were probed by the adsorption of carbon monoxide, which was monitored qualitatively and quantitatively by a combination of microcalorimetry, temperature-programmed desorption experiments and Fourier transform infrared spectroscopy. For the zinc oxide-containing catalysts, the pretreatment in flowing carbon monoxide at 493 K resulted in a severe decoration of the copper metal particles with ZnOx adspecies, whereas after methanol synthesis at 493 K the state of the copper was essentially identical to that seen after hydrogen reduction. Copper was always found to be present in its zero-valent state.

2.
Phys Chem Chem Phys ; 8(13): 1556-65, 2006 Apr 07.
Article in English | MEDLINE | ID: mdl-16633640

ABSTRACT

CO adsorption on the ternary methanol synthesis Cu/ZnO/Al2O3 catalyst was studied in detail by means of adsorption microcalorimetry and flow temperature-programmed desorption (TPD). Based on these experimental data, we established a microkinetic analysis method, which provides information about the adsorption kinetics of CO on the catalyst surface. Experimentally derived microcalorimetric heats of adsorption were applied in a microkinetic model to simulate TPD curves with varying initial coverage. Two approaches were used: an integral approach based on evaluation of the integral heats of adsorption which predicts the experimental TPD curves roughly and provides first approximations for the preexponential factors. The second, more detailed approach was based on the simulation of the adsorption isotherm taking the experimentally determined coverage-dependence of the heat of adsorption into account. This approach led to a significantly improved agreement between experimental and simulated TPD curves. Moreover, it was possible to derive the standard entropy of adsorption. The general applicability of our approaches is demonstrated by analyzing the CO TPD and microcalorimetry data obtained with a binary ZnO-free Cu/Al2O3 catalyst.

SELECTION OF CITATIONS
SEARCH DETAIL
...