Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 11(1): 5617, 2020 Nov 05.
Article in English | MEDLINE | ID: mdl-33154367

ABSTRACT

Organic solar cells based on non-fullerene acceptors can show high charge generation yields despite near-zero donor-acceptor energy offsets to drive charge separation and overcome the mutual Coulomb attraction between electron and hole. Here, we use time-resolved optical spectroscopy to show that free charges in these systems are generated by thermally activated dissociation of interfacial charge-transfer states that occurs over hundreds of picoseconds at room temperature, three orders of magnitude slower than comparable fullerene-based systems. Upon free electron-hole encounters at later times, both charge-transfer states and emissive excitons are regenerated, thus setting up an equilibrium between excitons, charge-transfer states and free charges. Our results suggest that the formation of long-lived and disorder-free charge-transfer states in these systems enables them to operate closely to quasi-thermodynamic conditions with no requirement for energy offsets to drive interfacial charge separation and achieve suppressed non-radiative recombination.

2.
J Am Chem Soc ; 141(29): 11565-11571, 2019 Jul 24.
Article in English | MEDLINE | ID: mdl-31305073

ABSTRACT

Covalent organic frameworks (COFs) are a highly versatile group of porous materials constructed from molecular building blocks, enabling deliberate tuning of their final bulk properties for a broad range of applications. Understanding their excited-state dynamics is essential for identifying suitable COF materials for applications in electronic devices such as transistors, photovoltaic cells, and water-splitting electrodes. Here, we report on the ultrafast excited-state dynamics of a series of fully conjugated two-dimensional (2D) COFs in which different molecular subunits are connected through imine bonds, using transient absorption spectroscopy. Although these COFs feature different topologies and chromophores, we find that excited states behave similarly across the series. We therefore present a unified model in which charges are generated through rapid singlet-singlet annihilation and show lifetimes of several tens of microseconds. These long-lived charges are of particular interest for optoelectronic devices, and our results point toward the importance of controlling the singlet-singlet annihilation step in order to increase the yield of separated charges.

3.
ACS Nano ; 11(11): 10834-10843, 2017 11 28.
Article in English | MEDLINE | ID: mdl-29064668

ABSTRACT

Self-assembled hybrid perovskite quantum wells have attracted attention due to their tunable emission properties, ease of fabrication, and device integration. However, the dynamics of excitons in these materials, especially how they couple to phonons, remains an open question. Here, we investigate two widely used materials, namely, butylammonium lead iodide (CH3(CH2)3NH3)2PbI4 and hexylammonium lead iodide (CH3(CH2)5NH3)2PbI4, both of which exhibit broad photoluminescence tails at room temperature. We performed femtosecond vibrational spectroscopy to obtain a real-time picture of the exciton-phonon interaction and directly identified the vibrational modes that couple to excitons. We show that the choice of the organic cation controls which vibrational modes the exciton couples to. In butylammonium lead iodide, excitons dominantly couple to a 100 cm-1 phonon mode, whereas in hexylammonium lead iodide, excitons interact with phonons with frequencies of 88 and 137 cm-1. Using the determined optical phonon energies, we analyzed photoluminescence broadening mechanisms. At low temperatures (<100 K), the broadening is due to acoustic phonon scattering, whereas at high temperatures, LO phonon-exciton coupling is the dominant mechanism. Our results help explain the broad photoluminescence line shape observed in hybrid perovskite quantum wells and provide insights into the mechanism of exciton-phonon coupling in these materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...