Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 48(8): 4375-4386, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34105167

ABSTRACT

PURPOSE: Chemical shift-encoded magnetic resonance imaging enables accurate quantification of liver fat content though estimation of proton density fat-fraction (PDFF). Computed tomography (CT) is capable of quantifying fat, based on decreased attenuation with increased fat concentration. Current quantitative fat phantoms do not accurately mimic the CT number of human liver. The purpose of this work was to develop and validate an optimized phantom that simultaneously mimics the MRI and CT signals of fatty liver. METHODS: An agar-based phantom containing 12 vials doped with iodinated contrast, and with a granular range of fat fractions was designed and constructed within a novel CT and MR compatible spherical housing design. A four-site, three-vendor validation study was performed. MRI (1.5T and 3T) and CT images were obtained using each vendor's PDFF and CT reconstruction, respectively. An ROI centered in each vial was placed to measure MRI-PDFF (%) and CT number (HU). Mixed-effects model, linear regression, and Bland-Altman analysis were used for statistical analysis. RESULTS: MRI-PDFF agreed closely with nominal PDFF values across both field strengths and all MRI vendors. A linear relationship (slope = -0.54 ± 0.01%/HU, intercept = 37.15 ± 0.03%) with an R2 of 0.999 was observed between MRI-PDFF and CT number, replicating established in vivo signal behavior. Excellent test-retest repeatability across vendors (MRI: mean = -0.04%, 95% limits of agreement = [-0.24%, 0.16%]; CT: mean = 0.16 HU, 95% limits of agreement = [-0.15HU, 0.47HU]) and good reproducibility using GE scanners (MRI: mean = -0.21%, 95% limits of agreement = [-1.47%, 1.06%]; CT: mean = -0.18HU, 95% limits of agreement = [-1.96HU, 1.6HU]) were demonstrated. CONCLUSIONS: The proposed fat phantom successfully mimicked quantitative liver signal for both MRI and CT. The proposed fat phantom in this study may facilitate broader application and harmonization of liver fat quantification techniques using MRI and CT across institutions, vendors and imaging platforms.


Subject(s)
Magnetic Resonance Imaging , Tomography, X-Ray Computed , Humans , Liver , Magnetic Resonance Spectroscopy , Phantoms, Imaging , Reproducibility of Results
2.
Magn Reson Med ; 85(4): 2212-2220, 2021 04.
Article in English | MEDLINE | ID: mdl-33107109

ABSTRACT

PURPOSE: The purpose of this work is to characterize the magnitude and variability of B0 and B1 inhomogeneities in the liver in large cohorts of patients at both 1.5 T and 3.0 T. METHODS: Volumetric B0 and B1 maps were acquired over the liver of patients presenting for routine abdominal MRI. Regions of interest were drawn in the nine Couinaud segments of the liver, and the average value was recorded. Magnitude and variation of measured averages in each segment were reported across all patients. RESULTS: A total of 316 B0 maps and 314 B1 maps, acquired at 1.5 T and 3.0 T on a variety of GE Healthcare MRI systems in 630 unique exams, were identified, analyzed, and, in the interest of reproducible research, de-identified and made public. Measured B0 inhomogeneities ranged (5th-95th percentiles) from -31.7 Hz to 164.0 Hz for 3.0 T (-14.5 Hz to 81.3 Hz at 1.5 T), while measured B1 inhomogeneities (ratio of actual over prescribed flip angle) ranged from 0.59 to 1.13 for 3.0 T (0.83 to 1.11 at 1.5 T). CONCLUSION: This study provides robust characterization of B0 and B1 inhomogeneities in the liver to guide the development of imaging applications and protocols. Field strength, bore diameter, and sex were determined to be statistically significant effects for both B0 and B1 uniformity. Typical clinical liver imaging at 3.0 T should expect B0 inhomogeneities ranging from approximately -100 Hz to 250 Hz (-50 Hz to 150 Hz at 1.5 T) and B1 inhomogeneities ranging from approximately 0.4 to 1.3 (0.7 to 1.2 at 1.5 T).


Subject(s)
Liver , Magnetic Resonance Imaging , Humans , Liver/diagnostic imaging , Phantoms, Imaging
3.
Viruses ; 12(4)2020 04 16.
Article in English | MEDLINE | ID: mdl-32316091

ABSTRACT

Human head and neck cancers that develop from the squamous cells of the oropharynx (Oropharyngeal Squamous Cell Carcinomas or OPSCC) are commonly associated with the papillomavirus infection. A papillomavirus infection-based mouse model of oropharyngeal tumorigenesis would be valuable for studying the development and treatment of these tumors. We have developed an efficient system using the mouse papillomavirus (MmuPV1) to generate dysplastic oropharyngeal lesions, including tumors, in the soft palate and the base of the tongue of two immune-deficient strains of mice. To maximize efficiency and safety during infection and endoscopy, we have designed a nose cone for isoflurane-induced anesthesia that takes advantage of a mouse's need to breathe nasally and has a large window for oral manipulations. To reach and infect the oropharynx efficiently, we have repurposed the Greer Pick allergy testing device as a virus delivery tool. We show that the Pick can be used to infect the epithelium of the soft palate and the base of the tongue of mice directly, without prior scarification. The ability to induce and track oropharyngeal papillomavirus-induced tumors in the mouse, easily and robustly, will facilitate the study of oropharyngeal tumorigenesis and potential treatments.


Subject(s)
Nasal Mucosa/pathology , Nasal Mucosa/virology , Oropharyngeal Neoplasms/etiology , Oropharyngeal Neoplasms/pathology , Papillomaviridae/physiology , Papillomavirus Infections/complications , Papillomavirus Infections/virology , Anesthesia , Animals , Biopsy , Disease Models, Animal , Endoscopy , Humans , Mice , Oropharynx/pathology , Oropharynx/virology , Squamous Cell Carcinoma of Head and Neck/etiology , Squamous Cell Carcinoma of Head and Neck/pathology
4.
Magn Reson Med ; 83(6): 2051-2063, 2020 06.
Article in English | MEDLINE | ID: mdl-31724776

ABSTRACT

PURPOSE: To develop and validate a T1 -corrected chemical-shift encoded MRI (CSE-MRI) method to improve noise performance and reduce bias for quantification of tissue proton density fat-fraction (PDFF). METHODS: A variable flip angle (VFA)-CSE-MRI method using joint-fit reconstruction was developed and implemented. In computer simulations and phantom experiments, sources of bias measured using VFA-CSE-MRI were investigated. The effect of tissue T1 on bias using low flip angle (LFA)-CSE-MRI was also evaluated. The noise performance of VFA-CSE-MRI was compared to LFA-CSE-MRI for liver fat quantification. Finally, a prospective pilot study in patients undergoing gadoxetic acid-enhanced MRI of the liver to evaluate the ability of the proposed method to quantify liver PDFF before and after contrast. RESULTS: VFA-CSE-MRI was accurate and insensitive to transmit B1 inhomogeneities in phantom experiments and computer simulations. With high flip angles, phase errors because of RF spoiling required modification of the CSE signal model. For relaxation parameters commonly observed in liver, the joint-fit reconstruction improved the noise performance marginally, compared to LFA-CSE-MRI, but eliminated T1 -related bias. A total of 25 patients were successfully recruited and analyzed for the pilot study. Strong correlation and good agreement between PDFF measured with VFA-CSE-MRI and LFA-CSE-MRI (pre-contrast) was observed before (R2 = 0.97; slope = 0.88, 0.81-0.94 95% confidence interval [CI]; intercept = 1.34, -0.77-1.92 95% CI) and after (R2 = 0.93; slope = 0.88, 0.78-0.98 95% CI; intercept = 1.90, 1.01-2.79 95% CI) contrast. CONCLUSION: Joint-fit VFA-CSE-MRI is feasible for T1 -corrected PDFF quantification in liver, is insensitive to B1 inhomogeneities, and can eliminate T1 bias, but with only marginal SNR advantage for T1 values observed in the liver.


Subject(s)
Liver , Magnetic Resonance Imaging , Humans , Liver/diagnostic imaging , Phantoms, Imaging , Pilot Projects , Prospective Studies , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...