Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 41(18): 3467-76, 1998 Aug 27.
Article in English | MEDLINE | ID: mdl-9719600

ABSTRACT

A broad screening program previously identified phenprocoumon (1) as a small molecule template for inhibition of HIV protease. Subsequent modification of this lead through iterative cycles of structure-based design led to the activity enhancements of pyrone and dihydropyrone ring systems (II and V) and amide-based substitution (III). Incorporation of sulfonamide substitution within the dihydropyrone template provided a series of highly potent HIV protease inhibitors, with structure-activity relationships described in this paper. Crystallographic studies provided further information on important binding interactions responsible for high enzymatic binding. These studies culminated in compound VI, which inhibits HIV protease with a Ki value of 8 pM and shows an IC90 value of 100 nM in antiviral cell culture. Clinical trials of this compound (PNU-140690, Tipranavir) for treatment of HIV infection are currently underway.


Subject(s)
Anti-HIV Agents , HIV Protease Inhibitors , HIV Protease/metabolism , Pyridines , Pyrones , Animals , Anti-HIV Agents/chemistry , Anti-HIV Agents/metabolism , Anti-HIV Agents/pharmacology , Cell Line , Cell Line, Transformed , Chromatography, High Pressure Liquid , Crystallography, X-Ray , HIV Protease Inhibitors/chemistry , HIV Protease Inhibitors/metabolism , HIV Protease Inhibitors/pharmacology , HIV-1/drug effects , HIV-1/enzymology , Humans , Hydrogen Bonding , Mice , Models, Molecular , Protein Binding , Pyridines/chemistry , Pyridines/metabolism , Pyridines/pharmacology , Pyrones/chemistry , Pyrones/metabolism , Pyrones/pharmacology , Stereoisomerism , Structure-Activity Relationship , Sulfonamides
2.
Antimicrob Agents Chemother ; 41(5): 1058-63, 1997 May.
Article in English | MEDLINE | ID: mdl-9145869

ABSTRACT

PNU-140690 is a member of a new class of nonpeptidic human immunodeficiency virus (HIV) protease inhibitors (sulfonamide-containing 5,6-dihydro-4-hydroxy-2-pyrones) discovered by structure-based design. PNU-140690 has excellent potency against a variety of HIV type 1 (HIV-1) laboratory strains and clinical isolates, including those resistant to the reverse transcriptase inhibitors zidovudine or delavirdine. When combined with either zidovudine or delavirdine, PNU-140690 contributes to synergistic antiviral activity. PNU-140690 is also highly active against HIV-1 variants resistant to peptidomimetic protease inhibitors, underscoring the structural distinctions between PNU-140690 and substrate analog protease inhibitors. PNU-140690 retains good antiviral activity in vitro in the presence of human plasma proteins, and preclinical pharmacokinetic studies revealed good oral bioavailability. Accordingly, PNU-140690 is a candidate for clinical evaluation.


Subject(s)
HIV Protease Inhibitors/pharmacology , HIV-1/drug effects , Pyridines/pharmacology , Pyrones/pharmacology , Anti-HIV Agents/pharmacology , Antiviral Agents/pharmacology , Cells, Cultured , Delavirdine , Drug Combinations , Drug Evaluation, Preclinical , Drug Synergism , Genotype , HIV-1/genetics , Humans , Indoles/pharmacology , Piperazines/pharmacology , Reverse Transcriptase Inhibitors/pharmacology , Sulfonamides , Virus Replication/drug effects , Zidovudine/pharmacology
3.
J Med Chem ; 40(7): 1149-64, 1997 Mar 28.
Article in English | MEDLINE | ID: mdl-9089336

ABSTRACT

Recently, cyclooctylpyranone derivatives with m-carboxamide substituents (e.g. 2c) were identified as potent, nonpeptidic HIV protease inhibitors, but these compounds lacked significant antiviral activity in cell culture. Substitution of a sulfonamide group at the meta position, however, produces compounds with excellent HIV protease binding affinity and antiviral activity. Guided by an iterative structure-based drug design process, we have prepared and evaluated a number of these derivatives, which are readily available via a seven-step synthesis. A few of the most potent compounds were further evaluated for such characteristics as pharmacokinetics and toxicity in rats and dogs. From this work, the p-cyanophenyl sulfonamide derivative 35k emerged as a promising inhibitor, was selected for further development, and entered phase I clinical trials.


Subject(s)
HIV Protease Inhibitors/chemical synthesis , Pyrones/chemical synthesis , Animals , Cell Line , Crystallography, X-Ray , Dogs , HIV Protease Inhibitors/chemistry , HIV Protease Inhibitors/pharmacokinetics , Humans , Magnetic Resonance Spectroscopy , Male , Mass Spectrometry , Models, Molecular , Pyrones/chemistry , Pyrones/pharmacokinetics , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Sulfonamides/chemistry
4.
J Med Chem ; 39(23): 4630-42, 1996 Nov 08.
Article in English | MEDLINE | ID: mdl-8917652

ABSTRACT

From a broad screening program, the 4-hydroxycoumarin phenprocoumon (I) was previously identified as a lead template with HIV protease inhibitory activity. The crystal structure of phenprocoumon/HIV protease complex initiated a structure-based design effort that initially identified the 4-hydroxy-2-pyrone U-96988 (II) as a first-generation clinical candidate for the potential treatment of HIV infection. Based upon the crystal structure of the 4-hydroxy-2-pyrone III/HIV protease complex, a series of analogues incorporating a 5,6-dihydro-4-hydroxy-2-pyrone template were studied. It was recognized that in addition to having the required pharmacophore (the 4-hydroxy group with hydrogen-bonding interaction with the two catalytic aspartic acid residues and the lactone moiety replacing the ubiquitous water molecule in the active site), these 5,6-dihydro-4-hydroxy-2-pyrones incorporated side chains at the C-6 position that appropriately extended into the S1' and S2' subsites of the enzyme active site. The crystal structures of a number of representative 5,6-dihydro-4-hydroxy-2-pyrones complexed with the HIV protease were also determined to provide better understanding of the interaction between the enzyme and these inhibitors to aid the structure-based drug design effort. The crystal structures of the ligands in the enzyme active site did not always agree with the conformations expected from experience with previous pyrone inhibitors. This is likely due to the increased flexibility of the dihydropyrone ring. From this study, compound XIX exhibited reasonably high enzyme inhibitory activity (Ki = 15 nM) and showed antiviral activity (IC50 = 5 microM) in the cell-culture assay. This result provided a research direction which led to the discovery of active 5,6-dihydro-4-hydroxy-2-pyrones as potential agents for the treatment of HIV infection.


Subject(s)
HIV Protease Inhibitors/chemical synthesis , Pyrones/chemical synthesis , Cell Line , Crystallography, X-Ray , Drug Design , HIV Protease Inhibitors/chemistry , HIV Protease Inhibitors/pharmacology , HIV-1/drug effects , HIV-1/enzymology , Humans , Magnetic Resonance Spectroscopy , Mass Spectrometry , Pyrones/chemistry , Pyrones/pharmacology , Spectrophotometry, Infrared
6.
J Med Chem ; 39(20): 4125-30, 1996 Sep 27.
Article in English | MEDLINE | ID: mdl-8831779

ABSTRACT

Previously, 3-substituted cycloalkylpyranones, such as 2d, have proven to be effective inhibitors of HIV protease. In an initial series of 3-(1-phenylpropyl) derivatives with various cycloalkyl ring sizes, the cyclooctyl analog was the most potent. We became interested in exploring the influence of other structural changes, such as substitution on the phenyl ring and saturation of the 5,6-double bond, on the cycloalkyl ring size structure-activity relationship (SAR). Saturation of the 5,6-double bond in the pyrone ring significantly impacts the SAR, altering the optimal ring size from eight to six. Substitution of a sulfonamide at the meta position of the phenyl ring dramatically increases the potency of these inhibitors, but it does not change the optimal ring size in either the cycloalkylpyranone or the cycloalkyldihydropyrone series. This work has led to the identification of compounds with superb binding affinity for the HIV protease (Ki values in the 10-50 pM range). In addition, the cycloalkyldihydropyrones showed excellent antiviral activity in cell culture, with ED50 values as low as 1 microM.


Subject(s)
Anti-HIV Agents/chemical synthesis , HIV Protease Inhibitors/chemical synthesis , Pyrones/chemistry , Anti-HIV Agents/metabolism , Anti-HIV Agents/pharmacology , Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid Endopeptidases/chemistry , Aspartic Acid Endopeptidases/metabolism , Binding Sites , Crystallography, X-Ray , Cyclization , HIV Protease , HIV Protease Inhibitors/metabolism , HIV Protease Inhibitors/pharmacology , Models, Molecular , Molecular Structure , Protein Conformation , Pyrones/metabolism , Pyrones/pharmacology , Structure-Activity Relationship , Sulfonamides/chemistry
7.
J Med Chem ; 39(12): 2400-10, 1996 Jun 07.
Article in English | MEDLINE | ID: mdl-8691434

ABSTRACT

The low oral bioavailability and rapid biliary excretion of peptide-derived HIV protease inhibitors have limited their utility as potential therapeutic agents. Our broad screening program to discover non-peptidic HIV protease inhibitors previously identified compound I (phenprocoumon, Ki = 1 microM) as a lead template. Structure-based design of potent non-peptidic inhibitors, utilizing crystal structures of HIV protease/inhibitor complexes, provided a rational basis for the previously reported carboxamide-containing 4-hydroxycoumarins and 4-hydroxy-2-pyrones. The amino acid containing compound V (Ki = 4 nM) provided an example of a promising new series of HIV protease inhibitors with significantly improved enzymatic binding affinity. In this report, further structure-activity relationship studies, in which the carboxamide is replaced by a sulfonamide functionality, led to the identification of another series of nonamino acid containing promising inhibitors with significantly enhanced enzyme binding affinity and in vitro antiviral activity. The most active diastereomer of the sulfonamide-containing pyrone XVIII (Ki = 0.5 nM) shows improved antiviral activity (IC50 = 0.6 nM) and represents an example of a new design direction for the discovery of more potent non-peptidic HIV protease inhibitors as potential therapeutic agents for the treatment of HIV infection.


Subject(s)
4-Hydroxycoumarins/chemistry , HIV Protease Inhibitors/chemistry , HIV-1/enzymology , HIV-2/enzymology , Pyrones/chemistry , Sulfonamides/chemistry , 4-Hydroxycoumarins/pharmacology , Chromatography, High Pressure Liquid , Crystallography, X-Ray , Drug Design , HIV Protease Inhibitors/chemical synthesis , HIV Protease Inhibitors/pharmacology , HIV-1/drug effects , HIV-2/drug effects , Models, Molecular , Molecular Structure , Phenprocoumon/analogs & derivatives , Phenprocoumon/chemistry , Pyrones/chemical synthesis , Pyrones/pharmacology , Stereoisomerism , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/pharmacology
8.
Antimicrob Agents Chemother ; 38(2): 288-93, 1994 Feb.
Article in English | MEDLINE | ID: mdl-7514857

ABSTRACT

Bisheteroarylpiperazine compounds are nonnucleoside reverse transcriptase inhibitors of human immunodeficiency virus type 1 (HIV-1). To provide a rationale for combination therapy with a second-generation bisheteroarylpiperazine, we investigated the effect of U-90152 in combination with 3'-azido-3'-deoxythymidine (AZT) or 2',3'-dideoxycytidine (ddC). HIV-1-infected cells were cultured in the presence of test compounds, and drug effects on p24 core antigen production were measured by an enzyme-linked immunosorbent assay. In a CD4+ T-cell line (H9) infected with HIV-1IIIB, the 50% effective concentrations for U-90152, AZT, and ddC were 6.0, 80.4, and 31.8 nM, respectively. In human peripheral blood mononuclear cells infected with the molecularly cloned clinical isolate HIV-1JRCSF, the 50% effective concentrations for U-90152, AZT, and ddC were 5.3, 5.9, and 25.0 nM, respectively. Over a range of drug concentrations (U-90152 and AZT at 0.3, 1, 3, 10, and 30 nM; ddC at 3, 10, 30, and 100 nM), U-90152 in combination with AZT or ddC synergistically inhibited the replication of a laboratory-adapted strain and a clinical isolate of HIV-1.


Subject(s)
Antiviral Agents/pharmacology , HIV-1/drug effects , HIV-1/physiology , Indoles/pharmacology , Piperazines/pharmacology , Reverse Transcriptase Inhibitors , Virus Replication/drug effects , Zalcitabine/pharmacology , Zidovudine/pharmacology , Acquired Immunodeficiency Syndrome/drug therapy , Acquired Immunodeficiency Syndrome/microbiology , Delavirdine , Drug Synergism , HIV Reverse Transcriptase , HIV-1/enzymology , Humans , Leukocytes, Mononuclear/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...