Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22282651

ABSTRACT

ObjectiveTo investigate the effectiveness of heterologous booster schedules with AZD1222 (Oxford-AstraZeneca, referred to as AZD), BNT162b2 (Pfizer-BioNTech, BNT), and mRNA-1273 (Moderna, MOD) vaccines compared with primary schedules and with homologous mRNA-vaccine booster schedules during a period of omicron predominance. DesignPopulation-based cohort analyses. SettingDenmark, Finland, Norway, and Sweden, 27 December 2020 to 28 February 2022. ParticipantsAdults that had received at least a primary vaccination schedule (ie, two doses) of the AZD, BNT, and/or MOD vaccines during the study period. Main outcome measuresUsing the Kaplan-Meier estimator, we compared country-specific risks of SARS-CoV-2 infection and severe COVID-19 outcomes in heterologous booster vaccinated with primary schedule vaccinated (matched analyses) and homologous booster vaccinated (weighted analyses) since emergence of omicron. ResultsHeterologous booster schedules improved protection against all outcomes compared with primary schedules, with the largest and most robust effects observed for severe COVID-19. Risk differences for documented infection ranged from -22.4% to -3.1% (comparative vaccine effectiveness [CVE] 9.7% to 60.9%; >63.2% for COVID-19 hospitalisation) across countries for AZD1BNT2BNT3 (AZD as primary dose followed by two doses of BNT) vs AZD1BNT2 and -22.2% to -3.2% (CVE 37.4% to 67.8%; >34.6% for hospitalisation) for BNT1BNT2MOD3 vs BNT1BNT2, the two most common heterologous booster schedules. Heterologous- and homologous booster schedules had comparable effectiveness. Risk differences of documented infection ranged from -0.4% to 4.4% (CVE -20.0% to 2.4%) for AZD1BNT2BNT3 vs BNT1BNT2BNT3 and -19.8% to 1.7% (CVE -14.6% to 53.8%) for BNT1BNT2MOD3 vs BNT1BNT2BNT3; for most comparisons, risk differences for severe COVID-19 outcomes were smaller than 1 per 1000 vaccinated. Previous infection followed by a booster dose conferred the greatest protection. ConclusionHeterologous booster vaccine schedules are associated with an increased protection against omicron-related COVID-19 outcomes that is comparable to that afforded by homologous booster schedules.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-22273086

ABSTRACT

BackgroundCOVID-19 vaccines have been crucial in the pandemic response and understanding changes in vaccines effectiveness is essential to guide vaccine policies. Though the Delta variant is no longer dominant, understanding vaccines effectiveness properties will provide essential knowledge to comprehend the development of the pandemic and estimate potential changes over time. MethodsIn this population-based cohort study, we estimated vaccine effectiveness against SARS-CoV-2 infections, hospitalisations, intensive care admissions, and death using Cox proportional hazard models, across different vaccine product regimens and age groups, between 15 July and 31 November 2021 (Delta variant period). Vaccine status is included as a time-varying covariate and all models were adjusted for age, sex, comorbidities, county of residence, country of birth, and living conditions. Data from the entire adult Norwegian population were collated from the National Preparedness Register for COVID-19 (Beredt C19). ResultsThe overall adjusted vaccine effectiveness against infection decreased from 81.3% (confidence interval (CI): 80.7 to 81.9) in the first two to nine weeks after receiving a second dose to 8.6% (CI:4.0 to 13.1) after more than 33 weeks, compared to 98.6% (CI: 97.5 to 99.2) and 66.6% (CI: 57.9 to 73.6) against hospitalisation respectively. After the third dose (booster), the effectiveness was 75.9% (CI: 73.4 to 78.1) against infection and 95.0% (CI: 92.6 to 96.6) against hospitalisation. Spikevax or a combination of mRNA products provided the highest protection, but the vaccine effectiveness decreased with time since vaccination for all vaccine regimens. ConclusionsEven though the vaccine effectiveness against infection wanes over time, all vaccine regimens remained effective against hospitalisation after the second vaccine dose. For all vaccine regimens, a booster facilitated recovery of effectiveness. The results from this support the use of heterologous schedules, increasing flexibility in vaccination policy. Fundingno external funding

3.
Preprint in English | medRxiv | ID: ppmedrxiv-22272854

ABSTRACT

BackgroundCOVID-19 vaccination was recommended for adolescents in Norway since August 2021. In this population-based cohort study, we estimated the BNT162b2 vaccine effectiveness against any PCR-confirmed (symptomatic or not) SARS-CoV-2 infections caused by the Delta and Omicron variant among adolescents (12-17-years-old) in Norway from August 2021 to January 2022. MethodsUsing Cox proportional hazard models, we estimated the BNT162b2 vaccine effectiveness against any Delta and Omicron infections. Vaccine status was included as a time-varying covariate and models were adjusted for age, sex, comorbidities, county of residence, country of birth, and living conditions. Data were obtained from the National Preparedness registry for COVID-19, which contains individual-level data from national health and administrative registries. FindingsVaccine effectiveness against Delta infection peaked at 68% (95%CI: 64-71%) and 62% (95%CI: 57- 66%) in days 21-48 after the first dose among 12-15-year-olds and 16-17-year-olds respectively. Among 16-17-year-olds that received two doses, vaccine effectiveness peaked at 93% (95%CI: 90-95%) in days 35-62 and declined to 84% (95%CI: 76-89%) in 63 days or more after the second dose. For both age-groups, we found no protection against Omicron infection after receiving one dose. Among 16-17-year-olds, vaccine effectiveness against Omicron infection peaked at 53% (95%CI: 43-62%) in 7-34 days after the second dose and decreased to 23% (95%CI: 3-40%) in 63 days or more after vaccination. Vaccine effectiveness decreased with time since vaccination for both variants, but waning was observed to occur faster for Omicron. InterpretationOur results suggest reduced protection from BNT162b2 vaccination against any SARS-CoV-2 infection caused by the Omicron variant compared to the Delta. In addition, waning immunity was observed to occur faster for Omicron. The impact of vaccination among adolescents on reducing infection and thus transmission is limited during omicron dominance. FundingNo funding was received. Research in context Evidence before this studyBNT162b2 (Comirnaty, Pfizer-BioNTech) and mRNA-1273 (Spikevax, Moderna) vaccines have been approved for use in adolescents, based on results from randomized placebo-controlled trials demonstrating comparable immunogenicity and safety profile as in young adults. In addition, observational studies from Israel, the USA and England have reported high protection of BNT162b2 vaccines against SARS-CoV-2 Delta infection among adolescents. These studies also reported decrease in effectiveness with time since last vaccine dose. Evidence on the effect of an extended interval between doses, longer time since vaccination and the effect against different variants is limited. When we first planned this study in early February 2022, no data were available regarding vaccine effectiveness against SARS-CoV-2 Omicron infection among adolescents. To our knowledge when we completed this study and before submitting this article, only one study from England reported results in a preprint on vaccine effectiveness against symptomatic SARS-CoV-2 Omicron infection among adolescents. We searched for studies that evaluated vaccine efficacy or effectiveness after vaccination of adolescents during 2021-2022 in PubMed, medRxiv, bioRxiv, SSRN. We searched for studies with several variations of the primary key search terms "COVID-19", "SARS-CoV-2", and "vaccine" (including names of specific vaccines, as BNT162b2), "vaccine effectiveness", "adolescents", "children". Added value of this studyThe rapid increase in the incidence of SARS-CoV-2 infection caused by the Omicron variant in highly vaccinated populations has raised concerns about the effectiveness of current vaccines in adults but also adolescents. In this population-based cohort study, we showed that the vaccine effectiveness against Omicron is lower than against Delta infections among adolescents, including symptomatic and asymptomatic infections. We should note that evidence suggests higher rates of asymptomatic carriage for Omicron than other variants of concern. Vaccine effectiveness that includes asymptomatic cases, as in the study from England, is expected to be lower than when including symptomatic cases only. We found that one and two doses of BNT162b2 among adolescents protected well against Delta. Vaccination provided high protection against Delta infections (>91%) among Norwegian 16-17-year-olds 7-62 days after the second dose. We found no protection against Omicron SARS-CoV-2 infection after one vaccine dose, and moderate effectiveness after two doses (peaked at 53%) among the 16-17-year-olds. Moreover, waning immunity was observed to occur faster for Omicron. Implications of all the available evidenceBased on the available evidence, the vaccine effectiveness among adolescents is similar to that reported among adults, also with an extended period of 8-12 weeks between doses which was used in Norway. Protection is significantly lower against Omicron than Delta infections and immunity wanes faster against Omicron. The impact of vaccination among adolescents on reducing infection and thus transmission is limited during omicron dominance. Policies should take into account the impact of vaccination campaigns among adolescents and their primary objective. Vaccine effectiveness should be re-evaluated when other variants appear as they might have different outcomes as shown between Delta and Omicron infections.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-22270437

ABSTRACT

Understanding the rapid epidemic growth of the novel SARS-CoV-2 Omicron variant is critical for public health management. We compared the secondary attack rate (SAR) of the Omicron and Delta variants in households using Norwegian contact tracing data from December 2021 to January 2022. Omicron SAR was higher (51%) than Delta (36%), with a relative risk (RR) of 1.41 (95% CI 1.27-1.56). We observed increased susceptibility to Omicron infection in household contacts compared to Delta independent of vaccination status; however, considering booster vaccinated contacts, the mean SAR was lower for both variants. We found increased Omicron transmissibility in all vaccination groups of primary cases, except partially vaccinated, compared to Delta. In particular, Omicron SAR for boosted primary cases was high, 46% vs 11 % for Delta (RR 4.34; 95% CI 1.52-25.16). In conclusion, booster doses decrease the infection risk of Delta and Omicron but have limited effect in preventing Omicron transmission.

5.
Preprint in English | medRxiv | ID: ppmedrxiv-21266222

ABSTRACT

BackgroundSARS-CoV-2 vaccines show high effectiveness against infection and (severe) disease. However, few studies estimate population level vaccine effectiveness against multiple COVID-19 outcomes, by age and including homologous and heterologous vaccine regimens. MethodsUsing Cox proportional hazard models on data from 4 293 544 individuals (99% of Norwegian adults), we estimated overall, age-, and product-specific vaccine effectiveness against SARS-CoV-2 infection, hospitalisation, ICU admission and death in Norway, using data from national registries. Vaccine status was included as time-dependent variable and we adjusted for sex, pre-existing medical conditions, country of birth, county of residence, and crowded living conditions. FindingsAdjusted vaccine effectiveness among fully vaccinated is 72{middle dot}1% (71{middle dot}2-73{middle dot}0) against SARS-CoV-2 infection, 92{middle dot}9% (91{middle dot}2-94{middle dot}2) against hospitalisation, 95{middle dot}5% (92{middle dot}6-97{middle dot}2) against ICU admission, and 88{middle dot}0% (82{middle dot}5-91{middle dot}8) against death. Among partially vaccinated, the effectiveness is 24{middle dot}3% (22{middle dot}3-26{middle dot}2) against infection and 82{middle dot}7% (77{middle dot}7-86{middle dot}6) against hospitalisation. Vaccine effectiveness against infection is 84{middle dot}7% (83{middle dot}1-86{middle dot}1) for heterologous mRNA vaccine regimens, 78{middle dot}3% (76{middle dot}8-79{middle dot}7) for Spikevax (Moderna; mRNA-1273), 69{middle dot}7% (68{middle dot}6-70{middle dot}8) for Comirnaty (Pfizer/BioNTech; BNT162b2), and 60{middle dot}7% (57{middle dot}5-63{middle dot}6) for Vaxzevria (AstraZeneca; ChAdOx nCoV-19; AZD1222) with a mRNA dose among fully vaccinated. InterpretationWe demonstrate good protection against SARS-CoV-2 infection and severe disease in fully vaccinated, including heterologous vaccine regimens, which could facilitate rapid immunization. Partially vaccinated were less likely to get severe disease than unvaccinated, though protection against infection was not as high, which could be essential in making vaccine prioritisation policies especially when availability is limited. FundingNorwegian Institute of Public Health, Helse Bergen Health Trust

6.
Preprint in English | medRxiv | ID: ppmedrxiv-21261357

ABSTRACT

COVID-19 has caused high morbidity and mortality in long-term care facilities (LTCFs) worldwide. We estimated vaccine effectiveness (VE) among residents and health care workers (HCWs) in LTCFs using Cox regressions. The VE against SARS-CoV-2 infection was 81.5 (95%CI: 75.3 - 86.1 82.7%) and 81.4% (95%CI: 74.5-86.4%) [≥] 7 days after 2nd vaccine dose among residents and staff respectively. The VE against COVID-19 associated death was 93.1% among residents, no hospitalisations occurred among HCW [≥]7 days after 2nd dose.

7.
Preprint in English | medRxiv | ID: ppmedrxiv-21253948

ABSTRACT

The COVID-19 response in most countries depends on testing, isolation, contact tracing, and quarantine, which is labor- and time consuming. Therefore, several countries worldwide launched Bluetooth based apps as supplemental tools. We evaluated the new Norwegian GAEN (Google Apple Exposure Notification) based contact tracing app "Smittestopp" under two relevant simulated scenarios, namely standing in a queue and riding public transport. We compared two configurations (C1: 58/63 dBm; C2: 58/68 dBm) with multiple weights (1.0-2.5) and time thresholds (10-15 min), by calculating notification rates among close contacts ([≤]2 meters, [≥]15 min) and other non-close contacts. In addition, we estimated the effect of using different operating systems and locations of phone (hand/pocket) using {chi}2. C2 resulted in significantly higher notification rates than C1 (p-value 0.05 - 0.005). The optimal setting resulted in notifications among 80% of close contacts and 34% of other contacts, using C2 with weights of 2.0 for the low and 1.5 for the middle bucket with a 13-minutes time threshold. Among other contacts, the notification rate was 67% among those [≤]2 meters for <15 minutes compared to 19% among those >2 meters (p=0.004). Significantly (p-values 0.046 - 0.001) lower notification rates were observed when using the iOS operating systems or carrying the phone in the pocket instead of in the hand. This study highlights the importance of testing and optimizing the performance of contact tracing apps under "real life" conditions to optimized configuration for identifying close contacts.

SELECTION OF CITATIONS
SEARCH DETAIL
...