Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cereb Cortex ; 33(8): 4606-4611, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36169574

ABSTRACT

There is emerging evidence that sampling the blood-oxygen-level-dependent (BOLD) response with high temporal resolution opens up new avenues to study the in vivo functioning of the human brain with functional magnetic resonance imaging. Because the speed of sampling and the signal level are intrinsically connected in magnetic resonance imaging via the T1 relaxation time, optimization efforts usually must make a trade-off to increase the temporal sampling rate at the cost of the signal level. We present a method, which combines a sparse event-related stimulus paradigm with subsequent data reshuffling to achieve high temporal resolution while maintaining high signal levels (HiHi). The proof-of-principle is presented by separately measuring the single-voxel time course of the BOLD response in both the primary visual and primary motor cortices with 100-ms temporal resolution.


Subject(s)
Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted/methods , Brain/diagnostic imaging , Brain Mapping/methods , Hemodynamics/physiology , Oxygen
2.
Semin Musculoskelet Radiol ; 25(3): 381-387, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34547803

ABSTRACT

One of the main advantages of three-dimensional (3D) magnetic resonance imaging (MRI) is the possibility of isotropic voxels and reconstructed planar cuts through the volumetric data set in any orientation with multiplanar reformation software through real-time evaluation. For example, reformats by the radiologist during reporting allows exploitation of the full potential of isotropic 3D volumetric acquisition or through standardized retrospective reformats of thicker predefined slices of an isotropic volumetric data set by technologists. The main challenges for integrating 3D fast spin echo (FSE) and turbo spin-echo (TSE) MRI in clinical practice are a long acquisition time and some artifacts, whereas for integrating 3D gradient-recalled echo protocols, the main challenges are lower signal-to-noise ratios (SNRs) and the inability to produce intermediate, and T2-weighted contrast. The implementation of bidirectional parallel imaging acquisition and random undersampling acceleration strategies of 3D TSE pulse sequences substantially shortens the examination time with only minor SNR reductions. This article provides an overview of general technical considerations of 3D FSE and TSE sequences in musculoskeletal MRI. It also describes how these sequences achieve efficient data acquisition and reviews the main advantages and challenges for their introduction to clinical practice.


Subject(s)
Imaging, Three-Dimensional , Magnetic Resonance Imaging , Artifacts , Humans , Radiologists , Retrospective Studies
3.
Invest Radiol ; 56(9): 545-552, 2021 09 01.
Article in English | MEDLINE | ID: mdl-33813573

ABSTRACT

OBJECTIVES: Through-slice chemical shift artifacts in state-of-the-art turbo-spin-echo (TSE) images can be significantly more severe at 7 T than at lower field strengths. In musculoskeletal applications, these artifacts appear similar to bone fractures or neoplastic bone marrow disease. The objective of this work was to explore and reduce through-slice chemical shift artifacts in 2-dimensional (2D) TSE imaging at 7 T. MATERIALS AND METHODS: This prospective study was approved by the local ethics board. The bandwidths of the excitation and refocusing radiofrequency (RF) pulses of a prototype 2D TSE sequence were individually modified and their effect on the slice profiles and relative slice locations of water and fat spins was assessed in an oil-water phantom. Based on these results, it was hypothesized that the combination of matched and increased excitation and refocusing RF pulse bandwidths ("MIB") of 1500 Hz would enable 2D TSE imaging with significantly reduced chemical shift artifacts compared with a state-of-the-art sequence with unmatched and moderate RF pulse bandwidths ("UMB") of 1095 and 682 Hz.A series of T1-weighted sagittal knee examinations in 10 healthy human subjects were acquired using the MIB and UMB sequences and independently evaluated by 2 radiologists. They measured the width of chemical shift artifacts at 2 standardized locations and graded the perceived negative effect of chemical shift artifacts on image quality in the bones and in the whole gastrocnemius muscle on a 5-point scale. Similar knee, wrist, and foot images were acquired in a single subject. Signal-to-noise ratios in the femoral bone marrow were computed between the UMB and MIB sequences. RESULTS: Phantom measurements confirmed the expected spatial separation of simultaneously affected water and fat slices between 40% and 200% of the prescribed slice thickness for RF pulse bandwidths between 2500 and 500 Hz. Through-slice chemical shift artifacts at the bone-cartilage interface were significantly smaller with MIB than with UMB (location 1: 0.35 ± 0.20 mm vs 1.27 ± 0.27 mm, P < 0.001; location 2: 0.25 ± 0.13 mm vs 1.48 ± 0.46 mm, P < 0.001; intraclass correlation coefficient = 0.98). The negative effect of chemical shift artifacts on image quality was significantly smaller with MIB than with UMB (bone: 2 ± 0 vs 4 ± 1, P < 0.004 [both readers]; muscle: 3 ± 0 vs 2 ± 0, P < 0.004 [both readers]; κ = 0.69). The signal-to-noise ratio of the UMB and MIB sequences was comparable, with a ratio of 99 ± 7%. Images acquired using the UMB sequence displayed numerous artifactual hyperintensities and diffuse, as well as locally severe, fat signal loss in all examined regions, whereas the MIB sequence consistently yielded high image quality with bright T1-weighted fat signal and excellent depiction of fine tissue structures. CONCLUSIONS: On 7 T systems, the selection of high and matched RF bandwidths for excitation and refocusing pulses for 2D TSE imaging without fat suppression showed consistently better image quality than state-of-the-art sequences with unmatched lower RF pulse bandwidths.


Subject(s)
Artifacts , Magnetic Resonance Imaging , Humans , Phantoms, Imaging , Prospective Studies , Signal-To-Noise Ratio
4.
Forensic Sci Med Pathol ; 16(4): 595-604, 2020 12.
Article in English | MEDLINE | ID: mdl-32920765

ABSTRACT

Compared to computed tomography (CT), magnetic resonance imaging (MRI) provides superior visualization of the soft tissue. Recently, the first 7 Tesla (7 T) MRI scanner was approved for clinical use, which will facilitate access to these ultra-high-field MRI scanners for noninvasive examinations and scientific studies on decedents. 7 T MRI has the potential to provide a higher signal-to-noise ratio (SNR), a characteristic that can be directly exploited to improve image quality and invest in attempts to increase resolution. Therefore, evaluating the diagnostic potential of 7 T MRI for forensic purposes, such as assessments of fatal gunshot wounds, was deemed essential. In this article, we present radiologic findings obtained for craniocerebral gunshot wounds in three decedents. The decedents were submitted to MRI examinations using a 7 T MRI scanner that has been approved for clinical use and a clinical 3 T MRI scanner for comparison. We focused on detecting tiny injuries beyond the wound tract caused by temporary cavitation, such as microbleeds. Additionally, 7 T T2-weighted MRI highlighted a dark (hypo intense) zone beyond the permanent wound tract, which was attributed to increased amounts of paramagnetic blood components in damaged tissue. Microbleeds were also detected adjacent to the wound tract in the white matter on 7 T MRI. Based on the findings of radiologic assessments, the advantages and disadvantages of postmortem 7 T MRI compared to 3 T MRI are discussed with regard to investigations of craniocerebral gunshot wounds as well as the potential role of 7 T MRI in the future of forensic science.


Subject(s)
Forensic Ballistics , Head Injuries, Penetrating/diagnostic imaging , Magnetic Resonance Imaging/methods , Wounds, Gunshot/diagnostic imaging , Adult , Aged , Brain/diagnostic imaging , Case-Control Studies , Female , Humans , Male , Middle Aged , Signal-To-Noise Ratio , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...