Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 23(11): 4762-4769, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37216575

ABSTRACT

Optical printing is a flexible strategy to precisely pattern plasmonic nanoparticles for the realization of nanophotonic devices. However, the generation of strongly coupled plasmonic dimers by sequential particle printing can be a challenge. Here, we report an approach to generate and pattern dimer nanoantennas in a single step by optical splitting of individual gold nanorods with laser light. We show that the two particles that constitute the dimer can be separated by sub-nanometer distances. The nanorod splitting process is explained by a combination of plasmonic heating, surface tension, optical forces, and inhomogeneous hydrodynamic pressure introduced by a focused laser beam. This realization of optical dimer formation and printing from a single nanorod provides a means for dimer patterning with high accuracy for nanophotonic applications.

2.
Nano Lett ; 19(8): 4928-4933, 2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31322894

ABSTRACT

Halide perovskite nanocrystals (NCs) have shown impressive advances, exhibiting optical properties that outpace conventional semiconductor NCs, such as near-unity quantum yields and ultrafast radiative decay rates. Nevertheless, the NCs suffer even more from stability problems at ambient conditions and due to moisture than their bulk counterparts. Herein, we report a strategy of employing polymer micelles as nanoreactors for the synthesis of methylammonium lead trihalide perovskite NCs. Encapsulated by this polymer shell, the NCs display strong stability against water degradation and halide ion migration. Thin films comprising these NCs exhibit a more than 15-fold increase in lifespan in comparison to unprotected NCs in ambient conditions and even survive over 75 days of complete immersion in water. Furthermore, the NCs, which exhibit quantum yields of up to 63% and tunability of the emission wavelength throughout the visible range, show no signs of halide ion exchange. Additionally, heterostructures of MAPI and MAPBr NC layers exhibit efficient Förster resonance energy transfer (FRET), revealing a strategy for optoelectronic integration.

3.
ACS Nano ; 12(10): 10151-10158, 2018 Oct 23.
Article in English | MEDLINE | ID: mdl-30296055

ABSTRACT

For high-speed optoelectronic applications relying on fast relaxation or energy-transfer mechanisms, understanding of carrier relaxation and recombination dynamics is critical. Here, we compare the differences in photoexcited carrier dynamics in two-dimensional (2D) and quasi-three-dimensional (quasi-3D) colloidal methylammonium lead iodide perovskite nanoplatelets via differential transmission spectroscopy. We find that the cooling of excited electron-hole pairs by phonon emission progresses much faster and is intensity-independent in the 2D case. This is due to the low dielectric surrounding of the thin perovskite layers, for which the Fröhlich interaction is screened less efficiently leading to higher and less density-dependent carrier-phonon scattering rates. In addition, rapid dissipation of heat into the surrounding occurs due to the high surface-to-volume ratio. Furthermore, we observe a subpicosecond dissociation of resonantly excited 1s excitons in the quasi-3D case, an effect which is suppressed in the 2D nanoplatelets due to their large exciton binding energies. The results highlight the importance of the surrounding environment of the inorganic nanoplatelets on their relaxation dynamics. Moreover, this 2D material with relaxation times in the subpicosecond regime shows great potential for realizing devices such as photodetectors or all-optical switches operating at THz frequencies.

4.
Angew Chem Int Ed Engl ; 55(44): 13887-13892, 2016 10 24.
Article in English | MEDLINE | ID: mdl-27690323

ABSTRACT

We describe the simple, scalable, single-step, and polar-solvent-free synthesis of high-quality colloidal CsPbX3 (X=Cl, Br, and I) perovskite nanocrystals (NCs) with tunable halide ion composition and thickness by direct ultrasonication of the corresponding precursor solutions in the presence of organic capping molecules. High angle annular dark field scanning transmission electron microscopy (HAADF-STEM) revealed the cubic crystal structure and surface termination of the NCs with atomic resolution. The NCs exhibit high photoluminescence quantum yields, narrow emission line widths, and considerable air stability. Furthermore, we investigated the quantum size effects in CsPbBr3 and CsPbI3 nanoplatelets by tuning their thickness down to only three to six monolayers. The high quality of the prepared NCs (CsPbBr3 ) was confirmed by amplified spontaneous emission with low thresholds. The versatility of this synthesis approach was demonstrated by synthesizing different perovskite NCs.

5.
Adv Mater ; 28(43): 9478-9485, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27620530

ABSTRACT

High-quality hybrid halide perovskite nanocrystals are fabricated through a simple, versatile, and efficient two-step process involving a dry step followed by a ligand-assisted liquid-phase exfoliation step. The emission wavelength of the resulting nanocrystals can be tuned either through composition by varying the halide content or by reducing their thickness.

SELECTION OF CITATIONS
SEARCH DETAIL
...